Park, Jeong-Soo A simulation-based hyperparameter selection for quantile estimation of the generalized extreme value distribution. (English) Zbl 1077.62040 Math. Comput. Simul. 70, No. 4, 227-234 (2005). Summary: A systematic way of selecting hyperparameters of the prior on the shape parameter of the generalized extreme value distribution (GEVD) is presented. The optimal selection is based on a Monte Carlo simulation in the generalized maximum likelihood estimation (GMLE) framework. A scaled total misfit measure for the accurate estimation of upper quantiles is used for the selection criterion. The performance evaluations for GEVD and non-GEVD show that the GMLE with selected hyperparameters produces more accurate quantile estimates than the MLE, the L-moments estimator, and E. S. Martins and J. R. Stedinger’s GMLE [Water Resource Res. 36, 737–744 (2000)]. Cited in 3 Documents MSC: 62G32 Statistics of extreme values; tail inference 65C05 Monte Carlo methods 86A05 Hydrology, hydrography, oceanography 62E15 Exact distribution theory in statistics 62P12 Applications of statistics to environmental and related topics Keywords:Beta distribution; Hydrology; Maximum likelihood estimation; L-moment estimation; Penalized likelihood; Shape parameter Software:AS 215; bootstrap; LMOMENTS PDF BibTeX XML Cite \textit{J.-S. Park}, Math. Comput. Simul. 70, No. 4, 227--234 (2005; Zbl 1077.62040) Full Text: DOI References: [1] Coles, S.; Dixon, M., Likelihood-based inference for extreme value models, Extremes, 2, 5-23, (1999) · Zbl 0938.62013 [2] Efron, B.; Tibshirani, R.J., An introduction to the bootstrap, (1993), Chapman & Hall/CRC Press Boca Raton · Zbl 0835.62038 [3] Hirose, H., Maximum likelihood parameter estimation by model augmentation with applications to the extended four-parameter generalized gamma distribution, Math. comp. simul., 54, 81-97, (2000) [4] Hosking, J.R.M., Algorithm AS 215: maximum-likelihood estimation of the parameters of the generalized extreme-value distribution, J. R. stat. soc., ser. C: appl. stat., 34, 301-310, (1985) [5] Hosking, J.R.M., L-moments: analysis and estimation of distributions using linear combinations of order statistics, J. R. stat. soc. ser. B, 52, 105-124, (1990) · Zbl 0703.62018 [6] Hosking, J.R.M., The four-parameter kappa distribution, IBM J. res. dev., 38, 251-258, (1994) · Zbl 0811.60014 [7] Landwehr, J.M.; Matalas, N.C., Quantile estimation with more or less floodlike distributions, Water resour. res., 16, 547-555, (1980) [8] Martins, E.S.; Stedinger, J.R., Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data, Water resour. res., 36, 737-744, (2000) [9] Prescott, P.; Walden, A.T., Maximum likelihood estimation of the parameters of the three-parameter generalized extreme-value distribution from censored samples, J. stat. comput. simul., 16, 241-250, (1983) · Zbl 0501.62016 [10] Verhoeven, P.; McAleer, M., Fat tails and asymmetry in financial volatility models, Math. comp. simul., 64, 351-361, (2004) · Zbl 1062.91040 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.