zbMATH — the first resource for mathematics

On the effect of finite buffer truncation in a two-node Jackson network. (English) Zbl 1077.60070
The paper deals with computing the tail decay rates of the stationary queue-length distribution of queueing networks by the finite truncation of some buffers, provided that the stability of the networks holds. Usually it is expected that such a truncation approximates the original decay rate well as the truncation level becomes large. The paper considers a two-node Jackson network with arbitrary routing topology. It is shown that contrary to expectations there can be three different cases for the limit.

60K25 Queueing theory (aspects of probability theory)
60F10 Large deviations
60J10 Markov chains (discrete-time Markov processes on discrete state spaces)
60K20 Applications of Markov renewal processes (reliability, queueing networks, etc.)
Full Text: DOI
[1] Alsmeyer, G. (1994). On the Markov renewal theorem. Stoch. Process. Appl. 50, 37–56. · Zbl 0789.60066 · doi:10.1016/0304-4149(94)90146-5
[2] Çinlar, E. (1975). Introduction to Stochastic Processes . Prentice-Hall, Englewood Cliffs, NJ.
[3] Fujimoto, K., Takahashi, Y. and Makimoto, N. (1998). Asymptotic properties of stationary distributions in two-stage queueing systems. J. Operat. Res. Soc. Japan 41, 118–141. · Zbl 1001.60100
[4] Fujimoto, K., Takahashi, Y. and Makimoto, N. (2001). Geometric decay of the steady-state probabilities in a quasi-birth–death process with a countable number of phases. Stoch. Models 17, 1–24. · Zbl 0985.60074 · doi:10.1081/STM-100001397
[5] Höglund, T. (1991). The ruin problem for finite Markov chains. Ann. Prob. 19, 1298–1310. JSTOR: · Zbl 0744.60083 · doi:10.1214/aop/1176990345 · links.jstor.org
[6] Jackson, J. R. (1957). Networks of waiting lines. Operat. Res. 5, 518–521.
[7] Kingman, J. F. C. (1961). A convexity property of positive matrices. Quart. J. Math. Oxford 12, 283–284. · Zbl 0101.25302 · doi:10.1093/qmath/12.1.283
[8] Kroese, D. P., Scheinhardt, W. R. W. and Taylor, P. G. (2004). Spectral properties of the tandem Jackson network, seen as a quasi-birth-and-death process. Ann. Appl. Prob. 14 , 2057–2089. · Zbl 1078.60078 · doi:10.1214/105051604000000477 · euclid:aoap/1099674089
[9] McDonald, D. R. (1999). Asymptotics of first passage times for random walk in an orthant. Ann. Appl. Prob. 9, 110–145. · Zbl 0937.60091 · doi:10.1214/aoap/1029962599
[10] Miyazawa, M. (2003). Conjectures on decay rates of tail probabilities in generalized Jackson and batch movement networks. J. Operat. Res. Soc. Japan 46, 74–98. · Zbl 1107.90320
[11] Miyazawa, M. (2004). The Markov renewal approach to M/G/\(1\) type queues with countably many background states. Queueing Systems 46, 177–196. · Zbl 1056.90035 · doi:10.1023/B:QUES.0000021148.33178.0f
[12] Miyazawa, M. and Zhao, Y. Q. (2004). The stationary tail asymptotics in the GI/G/1-type queue with countably many background states. Adv. Appl. Prob. 36, 1231–1251. · Zbl 1136.60366 · doi:10.1239/aap/1103662965
[13] Neuts, M. F. (1981). Matrix-Geometric Solutions in Stochastic Models (Johns Hopkins Ser. Math. Sci. 2 ). Johns Hopkins University Press, Baltimore, MD. · Zbl 0469.60002
[14] Seneta, E. (1981). Nonnegative Matrices and Markov Chains . Springer, New York. · Zbl 0471.60001
[15] Shurenkov, V. M. (1984). On the theory of Markov renewal. Theory Prob. Appl. 29, 247–265. · Zbl 0557.60078 · doi:10.1137/1129036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.