×

The symmetric Meixner-Pollaczek polynomials with real parameter. (English) Zbl 1077.33009

The symmetric Meixner-Pollaczek polynomials \(p_n^\lambda(x)\) can be determinated by the generating function \[ {{\exp (x\arctan t)}\over {(1+t^2)^\lambda}}=\sum_{n=0}^\infty p_n^\lambda(x) t^n,\quad \lambda\in\mathcal R. \] It is well known that these polynomials are orthogonal with the weight \[ \omega_\lambda(x)= { 1\over {2\pi}} \biggl| \Gamma \biggl( \lambda+ {{ix}\over 2}\biggr)\biggr| ^2 \] if \(\lambda>0\). In the case where \(\lambda\leq 0\) the Favard Theorem implies that there is no positive real measure \(\mu\) such that \(p_n^\lambda(x)\) are orthogonal with respect to \(\mu\). The author succeeded in proving that \(\{ p_n^\lambda(x)\}^\infty_{n=0}\) is an orthogonal polynomial system for every real \(\lambda\) if we define the associated inner product as follows: \[ \langle f, g\rangle_\lambda=\int_{-\infty}^{+\infty} R^{m_\lambda} (f\cdot g^*)\omega_{\lambda+{{m_\lambda}\over 2}} (x) \,dx \] where \(m_\lambda=\min_{n\in{\mathcal N}}\{ n: \lambda+ {n\over 2} >0\}\), \(R(f(x))={{f(x+i)+f(x-i)}\over 2}\), \(R^n(f)=R(R^{n-1}(f))\), \(g^*\equiv\) the complex conjugate of \(g\) and \(\omega_{\lambda+{{m_\lambda}\over 2}} (x)={1\over{2\pi}} | \Gamma(\lambda+{{m_\lambda}\over 2}+{{ix}\over 2})| ^2\).

MSC:

33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
42C05 Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Araaya, T. K., The Meixner-Pollaczek polynomials and a system of orthogonal polynomials in a strip, J. Comput. Appl. Math., 170, 241-254 (2004) · Zbl 1053.33004
[2] T.K. Araaya, Umbral calculus and the symmetric Meixner-Pollaczek polynomials, submitted for publication; T.K. Araaya, Umbral calculus and the symmetric Meixner-Pollaczek polynomials, submitted for publication · Zbl 1075.33001
[3] Askey, R.; Wilson, J., Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Mem. Amer. Math. Soc., 54 (1985) · Zbl 0572.33012
[4] Atakishiyev, N. M.; Suslov, S. K., The Hahn and Meixner polynomials of an imaginary argument and some of their applications, J. Phys. A: Math. Gen., 18, 1583-1596 (1985) · Zbl 0582.33006
[5] Bender, C. M.; Mead, L. R.; Pinsky, S., Continuous Hahn polynomials and the Heisenberg algebra, J. Math. Phys., 28, 509-513 (1987) · Zbl 0614.33025
[6] Chihara, T. S., An Introduction to Orthogonal Polynomials (1978), Orden and Breach, Science, pp. 175-186 · Zbl 0389.33008
[7] A. Di Bucchianico, An introduction to umbral calculus, EIDMA, February 1998; A. Di Bucchianico, An introduction to umbral calculus, EIDMA, February 1998 · Zbl 0902.05006
[8] Di Bucchianico, A.; Leob, D., A selected survey of umbral calculus, Electron. J. Combin. 3, Dynamical survey section, URL of European mirror site:
[9] Duran, A. J., A generalization of Favard’s Theorem for polynomials satisfying a recurrence relation, J. Approx. Theory, 74, 83-109 (1993) · Zbl 0789.41017
[10] (Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F. H., Higher Transcendental Functions. Higher Transcendental Functions, Bateman Manuscript Project., vol. 2 (1953), McGraw-Hill: McGraw-Hill New York), Chapter 10 · Zbl 0805.26016
[11] Favard, J., Sur les polynomes de Tchebicheff, C. R. Acad. Sci. Paris, 200, 2052-2053 (1935) · JFM 61.0288.01
[12] R. Koekoek, R.F. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials and its \(q\)-analogue, Delft University of Technology and Systems, Department of Technical Mathematics and Informatics, Report No. 98-17, 1998; R. Koekoek, R.F. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials and its \(q\)-analogue, Delft University of Technology and Systems, Department of Technical Mathematics and Informatics, Report No. 98-17, 1998
[13] Koornwinder, T. H., Meixner-Pollaczek polynomials and the Heisenberg algebra, J. Math. Phys., 30, 767-769 (1989) · Zbl 0672.33011
[14] Li, X.; Wong, R., On the asymptotics of the Meixner-Pollaczek polynomials and their zeros, Constr. Approx., 17, 59-90 (2001) · Zbl 0971.41016
[15] F. Marcellán, R. Álvarez-Nodarse, On the Favard theorem and its extensions, Elsevier preprint, January 2000; F. Marcellán, R. Álvarez-Nodarse, On the Favard theorem and its extensions, Elsevier preprint, January 2000
[16] Meixner, J., Orthogonale polynomsysteme mit einer besonderen gestalt der erzeugenden funktion, J. London Math. Soc., 9, 6-13 (1934) · JFM 60.0293.01
[17] G.V. Milovanović, Orthogonal polynomial systems and some applications, Preprint; G.V. Milovanović, Orthogonal polynomial systems and some applications, Preprint
[18] Pollaczek, F., Sur une famille de polynomes orthogonaux qui contient les polynomes d’Hermite et de Laguerre comme cas limites, C. R. Acad. Sci. Paris, 230, 1563-1565 (1950) · Zbl 0039.07704
[19] Rahman, M., A generalization of Gasper’s Kernel for Hahn polynomials: Application to Pollaczek polynomials, Canad. J. Math., 30, 133-146 (1978) · Zbl 0365.33010
[20] Roman, S.; Rota, G.-C., The umbral calculus, Adv. Math., 27, 95-188 (1978) · Zbl 0375.05007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.