zbMATH — the first resource for mathematics

Generalized skew normal model. (English) Zbl 1076.62096
Summary: The skew normal distribution proposed by A. A. Azzalini [Scand. J. Stat., Theory Appl. 12, 171–178 (1985; Zbl 0581.62014)] can be a suitable model for the analysis of data exhibiting a unimodal density function having some skewness present, a structure often occurring in data analysis. We study a generalization of the basic Azzalini model proposed by Balakrishnan, as a discussant of B. C. Arnold and R. J. Beaver [Test 11, 7–54 (2002; Zbl 1033.62013)]. The basic structural properties of the model including the reliability properties are presented. Estimation and testing of hypothesis of the skew parameter are discussed. Some comparisons of the models in terms of mean, variance and skewness are provided. Two data sets are analyzed.

62N02 Estimation in survival analysis and censored data
60E15 Inequalities; stochastic orderings
62E15 Exact distribution theory in statistics
62N05 Reliability and life testing
62F03 Parametric hypothesis testing
62F10 Point estimation
Full Text: DOI
[1] Arnold, B. C. andBeaver, R. J. (2000a). Hidden truncation models.Sankhya, 62:23–35. · Zbl 0973.62041
[2] Arnold, B. C. andBeaver, R. J. (2000b). The skew Cauchy distribution.Statistics and Probability Letters, 49:285–290. · Zbl 0969.62037 · doi:10.1016/S0167-7152(00)00059-6
[3] Arnold, B. C. andBeaver, R. J. (2002). Skewed multivariate models related to hidden truncation and/or selective reporting.Test, 11(2):7–54. · Zbl 1033.62013 · doi:10.1007/BF02595728
[4] Arnold, B. C., Beaver, R. J., Groeneveld, R. A., andMeeker, W. Q. (1993). The nontruncated marginal of a truncated bivariate normal distribution.Psychometrika, 58(3):471–488. · Zbl 0794.62075 · doi:10.1007/BF02294652
[5] Azzalini, A. A. (1985). A class of distributions which include the normal.Scandinavian Journal of Statistics, 12:171–178. · Zbl 0581.62014
[6] Azzalini, A. A. andCapitanio, A. (1999). Statistical applications of the multivariate skew normal distribution.Journal of the Royal Statistical Society, 61:579–602. · Zbl 0924.62050 · doi:10.1111/1467-9868.00194
[7] Azzalini, A. A. andDalla Valle, A. (1996). The multivariate skew normal distribution.Biometrika, 83(4):715–726. · Zbl 0885.62062 · doi:10.1093/biomet/83.4.715
[8] Barlow, R. E. andProschan, F. (1975).Statistical Theory of Reliability and Life Testing, Probability Models, Holt, Rinehart and Winston, New York.
[9] Chandra, N. K. andRoy, D. (2001). Some results on reverse hazard rate.Probability in the Engineering and Informational Sciences, 15:95–102. · Zbl 1087.62510 · doi:10.1017/S0269964801151077
[10] Gupta, P. L. andGupta, R. C. (1997). On the multivariate normal hazard.Journal of Multivariate Analysis, 62(1):64–73. · Zbl 0895.60021 · doi:10.1006/jmva.1997.1675
[11] Gupta, R. C. andBrown, N. (2001). Reliability studies of skew normal distribution and its application to a strength-stress model.Communications in Statistics, Theory and Methods, 30(11):2427–2445. · Zbl 1009.62513 · doi:10.1081/STA-100107696
[12] Klawless, J. F. (1982).Statistical Models and Methods for Life Time Data. John Wiley & Sons, New York.
[13] Kotz, S., Balakrishnan N., andJohnson, N. L. (2000).Continuous Multivariate Distributions vol. 1 John Wiley & Sons, New York. · Zbl 0946.62001
[14] Lillo, R. E., Nanda, A. K., andShaked, M. (1982). Some shifted stochastic orders. In N. Limnois and M. Nukulin, eds.,Recent Advances in Reliability Theory, Birkhauser, Boston. · Zbl 0963.60008
[15] Shaked, M. andShanthikumar, J. G. (1994).Stochastic Orders and their Applications. Academic Press, Boston.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.