zbMATH — the first resource for mathematics

Passage times for a spectrally negative Lévy process with applications to risk theory. (English) Zbl 1076.60038
Let \(X\) be a Lévy process with a generating triplet \((\sigma, \nu, a)\), \(\sigma\geq 0\), \(a\in\mathbb{R}\), and \(\nu\) is supported on \((-\infty,0)\). Let \(\tau_x\) and \(T_x\) be the first passage times above and below the level \(x\), and \(l_x\) and \(T'_x\) be the last passage times below and above the level \(x\) after times \(\tau_x\) and \(T_x\), respectively. The authors find explicit formulae for the Laplace transforms of \(l_x\), \(l_x-\tau_x\) and the joint Laplace transform of \(T_x\), \(l_x-T_x\) and \(T'_x-T_x\). A particular case when jumps constitute a compound Poisson process is considered.

60G51 Processes with independent increments; Lévy processes
60E10 Characteristic functions; other transforms
Full Text: DOI
[1] Asmussen, S. (2000) Ruin Probabilities. Singapore: World Scientific. · Zbl 0960.60003
[2] Avram, F., Kyprianou, A.E. and Pistorius, M.R. (2004) Exit problems for spectrally negative Lévy processes and applications to (Canadized) Russian options. Ann. Appl. Probab., 14, 215-238. · Zbl 1042.60023 · doi:10.1214/aoap/1075828052
[3] Bertoin, J. (1996) Lévy Processes. Cambridge: Cambridge University Press. · Zbl 0861.60003
[4] Bertoin, J. (1997) Exponential decay and ergodicity of completely asymmetric Lévy processes in a finite interval. Ann. Appl. Probab., 7, 156-169. · Zbl 0880.60077 · doi:10.1214/aoap/1034625257
[5] Bingham, N.H. (1975) Fluctuation theory in continuous time. Adv. Appl. Probab., 7, 705-766. JSTOR: · Zbl 0322.60068 · doi:10.2307/1426397 · links.jstor.org
[6] Dickson, D.C.M. and Egídio dos Reis, A.D. (1997) The effect of interest on negative surplus. Insurance Math. Econom., 21, 1-16. · Zbl 0894.90045 · doi:10.1016/S0167-6687(97)00014-0
[7] Doney, C.M. (1991) Hitting probability for spectrally positive Lévy process. J. London Math. Soc., 44, 566-576. · Zbl 0699.60061 · doi:10.1112/jlms/s2-44.3.566
[8] Egídio dos Reis, A.D. (1993) How long is the surplus below zero? Insurance Math. Econom., 12, 23-38. · Zbl 0777.62096 · doi:10.1016/0167-6687(93)90996-3
[9] Egídio dos Reis, A.D. (2000) On the moments of ruin and recovery times. Insurance Math. Econom., 27, 331-343. · Zbl 0988.91044 · doi:10.1016/S0167-6687(00)00056-1
[10] Embrechts, P., Klüppelberg, C. and Mikosch, T. (1997) Modelling Extremal Events for Insurance and Finance. Berlin: Springer-Verlag. · Zbl 0873.62116
[11] Emery, D.J. (1973) Exit problem for a spectrally positive process. Adv. Appl. Probab., 5, 498-520. JSTOR: · Zbl 0297.60035 · doi:10.2307/1425831 · links.jstor.org
[12] Gerber, H.U. (1970) An extension of the renewal equation and its application in the collective theory of risk. Skand. Aktuarietidskrift, 53, 205-210. · Zbl 0229.60062
[13] Gerber, H.U. (1990) When does the surplus reach a given target? Insurance Math. Econom., 9, 115-119. · Zbl 0731.62153 · doi:10.1016/0167-6687(90)90022-6
[14] Kyprianou, A.E. and Palmowski, Z. (2005) A martingale review of some fluctuation theory for spectrally negative Lévy processes. In M. É mery, M. Ledoux and M. Yor (eds), Séminaire de Probabilités XXXVIII, Lecture Notes in Math. 1857, pp. 16-29, Berlin: Springer-Verlag. · Zbl 1063.60071
[15] Picard, P. and Lefèvre, C. (1994) On the 1st crossing of the surplus process with a given upper barrier. Insurance Math. Econom., 14, 163-179. · Zbl 0806.62089 · doi:10.1016/0167-6687(94)00010-7
[16] Prabhu, N.U. (1970) Ladder variables for a continuous stochastic process. Z. Wahrscheinlichkeits theorie Verw. Geb., 16, 157-164. · Zbl 0193.45003 · doi:10.1007/BF00535696
[17] Rogers, L.C.G. (1990) The two-sided exit problem for spectrally positive Lévy processes. Adv. Appl. Probab., 22, 486-487. · Zbl 0698.60063 · doi:10.2307/1427548
[18] Rogers, L.C.G. (2000) Evaluating first-passage probabilities for spectrally one-sided Lévy processes. J. Appl. Probab., 37, 1173-1180. · Zbl 0981.60048 · doi:10.1239/jap/1014843099
[19] Rogozin, B.A. (1965) On distributions of functionals related to boundary problems for processes with independent increments. Theory Probab. Appl., 11, 580-591. · Zbl 0178.52701 · doi:10.1137/1111062
[20] Rolski, T., Schmidli, H., Schmidt, V. and Teugels, J. (1999) Stochastic Processes for Insurance and Finance. New York: Wiley. · Zbl 0940.60005
[21] Yang, H. and Zhang, L. (2001) Spectrally negative Lévy processes with applications in risk theory. Adv. Appl. Probab., 33, 281-291. · Zbl 0978.60104 · doi:10.1239/aap/999187908
[22] Zhang, C. and Wu, R. (2002) Total duration of negative surplus for the compound Poisson process that is perturbed by diffusion. J. Appl. Probab., 39, 517-532. · Zbl 1046.91076 · doi:10.1239/jap/1034082124
[23] Zolotarev, C.M. (1964) The first passage time of a level and the behavior at infinity for a class of processes with independent increments. Theory Probab. Appl., 9, 653-661. · Zbl 0149.12903 · doi:10.1137/1109090
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.