×

zbMATH — the first resource for mathematics

First-order logic revisited. Proceedings of the conference FOL75 – 75 years of first-order logic, Humboldt-University, Berlin, Germany, September 18–21, 2003. (English) Zbl 1076.03004
Logische Philosophie 12. Berlin: Logos Verlag (ISBN 3-8325-0475-3/pbk). vi, 398 p. (2004).

Show indexed articles as search result.

The articles of this volume will be reviewed individually.
Indexed articles:
Andréka, H.; Madarász, J. X.; Németi, I., Logical analysis of relativity theories, 7-36 [Zbl 1096.03029]
Avron, Arnon, Safety signature for first-order languages and their applications, 37-58 [Zbl 1092.03015]
Brünnler, Kai; Guglielmi, Alessio, A first order system with finite choice of premises, 59-74 [Zbl 1097.03009]
Englebretsen, George, Predicate logic, predicates, and terms, 75-88 [Zbl 1098.03013]
Ewald, William, FOL 75?, 89-105 [Zbl 1095.03003]
Hájek, Petr, Fuzzy logic and arithmetical hierarchy. IV, 107-115 [Zbl 1084.03020]
Hintikka, Jaakko, What is the true algebra of first-order logic?, 117-128 [Zbl 1097.03060]
Hodges, Wilfrid, The importance and neglect of conceptual analysis: Hilbert-Ackermann iii.3, 129-153 [Zbl 1095.03005]
Kracht, Marcus, Notes on substitution in first-order logic, 155-172 [Zbl 1100.03009]
Lanzet, Ran; Ben-Yami, Hanoch, Logical inquiries into a new formal system with plural reference, 173-223 [Zbl 1086.03027]
Madarász, Judit X.; Németi, István; Tőke, Csaba, On generalizing the logic-approach to space-time towards general relativity: first steps, 225-268 [Zbl 1096.03030]
Odintsov, S. P.; Wansing, H., Constructive predicate logic and constructive modal logic. Formal duality versus semantical duality, 269-286 [Zbl 1096.03018]
Robinson, J. A., Logic is not the whole story, 287-302 [Zbl 1097.03006]
Rossberg, Marcus, First-order logic, second-order logic, and completeness, 303-321 [Zbl 1101.03013]
Thielscher, Michael, Logic-based agents and the frame problem: a case for progression, 323-336 [Zbl 1110.68143]
Willard, Dan E., A version of the second incompleteness theorem for axiom systems that recognize addition but not multiplication as a total function, 337-368 [Zbl 1095.03065]
Woleński, Jan, First-order logic: (philosophical) pro and contra, 369-398 [Zbl 1102.03005]
MSC:
03-06 Proceedings, conferences, collections, etc. pertaining to mathematical logic and foundations
00B25 Proceedings of conferences of miscellaneous specific interest
PDF BibTeX XML Cite