zbMATH — the first resource for mathematics

A note on the design of \(hp\)-adaptive finite element methods for elliptic partial differential equations. (English) Zbl 1074.65131
The design of an automatic mesh modification strategy that is capable of exploiting both local \(h\)- and \(p\)-refinement is studied. The main focus of the paper is to provide a complete account of the design of a fully automatic \(hp\)-adaptive algorithm for the finite element approximation to a one-dimensional reaction-diffusion equation [cf. P. K. Moore, Numer. Math. 94, 367–401 (2003; Zbl 1033.65067)]. Some numerical experiments to highlight the practical performance of the proposed \(hp\)-adaptive finite element algorithm are also given.

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
35J25 Boundary value problems for second-order elliptic equations
Full Text: DOI
[1] Adjerid, S.; Aiffa, M.; Flaherty, J.E., Computational methods for singularly perturbed systems, () · Zbl 0976.65102
[2] Ainsworth, M.; Oden, J.T., A posteriori error estimation in finite element analysis, Series in computational and applied mathematics, (1996), Elsevier
[3] Ainsworth, M.; Senior, B., An adaptive refinement strategy for hp-finite element computations, Appl. numer. math., 26, 165-178, (1998) · Zbl 0895.65052
[4] Akin, J.E., Finite elements for analysis and design, (1994), Academic Press · Zbl 0877.73059
[5] Babuška, I.; Suri, M., The hp-version of the finite element method with quasiuniform meshes, M^2 AN modél. math. anal. numér., 21, 199-238, (1987) · Zbl 0623.65113
[6] Becker, R.; Rannacher, R., An optimal control approach to a-posteriori error estimation in finite element methods, () · Zbl 0868.65076
[7] Bernardi, C., Indicateurs d’erreur en éléments spectraux, RAIRO anal. numér., 30, 1, 1-38, (1996) · Zbl 0843.65077
[8] Bernardi, C.; Fiétier, N.; Owens, R.G., An error indicator for mortar element solutions to the Stokes problem, IMA J. num. anal., 21, 857-886, (2001) · Zbl 0998.65113
[9] Bey, K.S.; Patra, A.; Oden, J.T., hp-version discontinuous Galerkin methods for hyperbolic conservation laws: a parallel adaptive strategy, Int. J. numer. methods engrg., 38, 3889-3908, (1995) · Zbl 0855.65106
[10] Davis, P.J., Interpolation and approximation, (1963), Blaisdell Publishing Co · Zbl 0111.06003
[11] Demkowicz, L.; Rachowicz, W.; Devloo, P., A fully automatic hp-adaptivity, J. sci. comp., 17, 1-4, 117-142, (2002) · Zbl 0999.65121
[12] Douglass, S.A., Introduction to mathematical analysis, (1996), Addison Wesley · Zbl 0877.26001
[13] Eriksson, K.; Estep, D.; Hansbo, P.; Johnson, C., Introduction to adaptive methods for differential equations, (), 105-158 · Zbl 0829.65122
[14] Gui, W.; Babuška, I., The h, p and h-p versions of the finite element method in 1 dimension. part III. the adaptive h-p version, Numer. math., 49, 659-683, (1986) · Zbl 0614.65090
[15] Harriman, K.; Houston, P.; Senior, B.; Süli, E., hp-version discontinuous Galerkin methods with interior penalty for partial differential equations with nonnegative characteristic form, (), 89-119 · Zbl 1037.65117
[16] Heuer, N.; Mellado, M.E.; Stephan, E.P., hp-adaptive two-level methods for boundary integral equations on curves, Computing, 67, 4, 305-335, (2001) · Zbl 0995.65122
[17] Heuveline, V.; Rannacher, R., Duality-based adaptivity in the hp-finite element method, J. numer. math., 1, 2, 95-113, (2003) · Zbl 1050.65111
[18] Hörmander, L., The analysis of linear partial differential operators I: distributional theory and Fourier analysis, (1990), Springer-Verlag
[19] Houston, P.; Senior, B.; Süli, E., Sobolev regularity estimation for hp-adaptive finite element methods, (), 619-644 · Zbl 1043.65114
[20] Houston, P.; Süli, E., hp-adaptive discontinuous Galerkin finite element methods for hyperbolic problems, SIAM J. sci. comp., 23, 4, 1225-1251, (2001)
[21] Mavriplis, C., Adaptive mesh strategies for the spectral element method, Comput. methods. appl. mech. engrg., 116, 77-86, (1994) · Zbl 0826.76070
[22] Melenk, J.M.; Wohlmuth, B.I., On residual-based a posteriori error estimation in hp-FEM, Adv. comp. math., 15, 311-331, (2001) · Zbl 0991.65111
[23] Moore, P.K., Applications of lobatto polynomials to an adaptive finite element method: a posteriori error estimates for hp-adaptivity and grid-to-grid interpolation, Numer. math., 94, 367-401, (2003) · Zbl 1033.65067
[24] Oden, J.T.; Patra, A., A parallel adaptive strategy for hp finite elements, Comput. methods. appl. mech. engrg., 121, 449-470, (1995) · Zbl 0851.73067
[25] Oden, J.T.; Patra, A.; Feng, Y.S., An hp-adaptive strategy, (), 23-26
[26] Rachowicz, W.; Demkowicz, L.; Oden, J.T., Toward a universal h-p adaptive finite element strategy, part 3. design of h-p meshes, Comput. methods. appl. mech. engrg., 77, 181-212, (1989) · Zbl 0723.73076
[27] Schwab, Ch., p- and hp-finite element methods. theory and applications to solid and fluid mechanics, (1998), Oxford University Press Oxford · Zbl 0910.73003
[28] Schwab, Ch.; Suri, M., The p and h-p version of the finite element method for problems with boundary layers, Math. comp., 65, 1403-1429, (1996) · Zbl 0853.65115
[29] Solin, P.; Demkowicz, L., Goal-oriented hp-adaptivity for elliptic problems, Comput. meth. appl. mech. engrg., 193, 449-468, (2004) · Zbl 1044.65082
[30] Süli, E.; Houston, P., Adaptive finite element approximation of hyperbolic problems, (), 269-344 · Zbl 1141.76428
[31] Süli, E.; Houston, P.; Schwab, Ch., hp-finite element methods for hyperbolic problems, (), 143-162 · Zbl 0959.65127
[32] Süli, E.; Houston, P.; Senior, B., hp-discontinuous Galerkin finite element methods for nonlinear hyperbolic problems, Int. J. numer. meth. fluids., 40, 1-2, 153-169, (2002) · Zbl 1021.76027
[33] Szabó, B.; Babuška, I., Finite element analysis, (1991), J. Wiley & Sons New York
[34] Valenciano, J.; Owens, R.G., An h-p adaptive spectral element method for Stokes flow, Appl. numer. math., 33, 365-371, (2000) · Zbl 0992.76062
[35] Verfürth, R., A review of a posteriori error estimation and adaptive mesh-refinement techniques, (1996), B.G. Teubner Stuttgart · Zbl 0853.65108
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.