zbMATH — the first resource for mathematics

SLE for theoretical physicists. (English) Zbl 1073.81068
The paper can be considered as an introduction to Schramm-Loewner evolution (SLE). The paper contains 6 sections. Section 1 (Introduction) contains history of the problem and aims of the article. In section 2 the lattice models are introduced which can be interpreted in terms of random non-intersecting paths on the lattice whose continuum limit will be described by SLE. Section 3 has subsections about the postulates of SLE, Loewner’s equation, Schramm-Loewner evolution, simple properties of SLE and Radial SLE and the winding angle. Section 4 devoted to calculating with SLE. Next section describes relation of SLE to conformal field theory. Section 6 contains related ideas about multiple SLEs and other variants of SLE.

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81S25 Quantum stochastic calculus
Full Text: DOI arXiv
[1] Cardy, J., J. phys. A, 25, L201, (1992), Available from:
[2] Langlands, R.; Pouliot, P.; Saint-Aubin, Y., Bull. AMS, 30, 1, (1994), Available from:
[3] Nienhuis, B., ()
[4] Löwner, K., Math. ann., 89, 103, (1923)
[5] Schramm, O., Israel J. math., 118, 221, (2000), Available from:
[6] Lawler, G.F.; Schramm, O.; Werner, W., Acta math., Acta math., Ann. inst. H. Poincaré statist., 38, 1, 109, (2002), Available from:
[7] Smirnov, S., C.R. acad. sci. Paris Sér. I math., 333, 3, 239, (2001), a longer version is available at http://www.math.kth.se/ stas/papers
[8] Smirnov, S.; Werner, W., Math. res. lett., 8, 729, (2001), Available from:
[9] Cardy, J., Nucl. phys. B, 240, 514, (1984)
[10] Bauer, M.; Bernard, D., Commun. math. phys., Phys. lett. B, Phys. lett. B, Phys. lett. B, Ann. Henri Poincaré, 5, 289, (2004), Available from:
[11] R. Friedrich, W. Werner, C.R. Acad. Sci. Paris, Ser. I Math. 335 (2002) 947. Available from: <math.PR/0209382>
[12] W. Werner, in: S. Simon (Ed.), Ecole d’Eté de Probabilités de Saint-Flour XXXII (2002), Springer Lecture Notes in Mathematics, vol. 1180, 2004, p. 113. Available from: <math.PR/0303354>
[13] G.F. Lawler, in: ICTP Lecture Notes, vol. 17, 2004, p. 305. Available from: <http://www.ictp.trieste.it/ pub_off/lectures/vol17.html>; J.-P. Françoise, G. Naber, T.S. Tsun (Eds.), Encyclopedia of Mathematical Physics, Elsevier, 2005 (to appear). Available from: <http://www.math.cornell.edu/lawler/encyclopedia.ps>; Conformally Invariant Processes in the Plane, book, American Mathematical Society, Providence, RI, 2005
[14] Kager, W.; Nienhuis, B., J. stat. phys., 115, 1149, (2004), Available from:
[15] Gruzberg, I.A.; Kadanoff, L.P., J. stat. phys., 114, 1183, (2004), Available from:
[16] B. Duplantier. Available from: <math-ph/0303034>
[17] Kondev, J., Phys. rev. lett., 78, 4320, (1997), Available from:
[18] Kager, W.; Nienhuis, B.; Kadanoff, L.P., J. stat. phys., 115, 805, (2004), Available from:
[19] S. Rohde, O. Schramm, Ann. Math. (to appear). Available from: <math.PR/0106036>
[20] Duplantier, B., Phys. rev. lett., 84, 1363, (2000), Available from:
[21] V. Beffara, Ann. Probab. 32 (2004) 2606
[22] G.F. Lawler, O. Schramm, W. Werner, in: Fractal Geometry and Applications, A Jubilee of Benoit Mandelbrot, AMS Proc. Symp. Pure Math. (to appear). Available from: <math.PR/02044277>
[23] O. Schramm, S. Sheffield. Available from: <math.PR/0310210>
[24] Lawler, G.F.; Schramm, O.; Werner, W., Conformal invariance of planar loop-erased random walks and uniform spanning trees, Ann. probab., 32, 939, (2004), Available from: · Zbl 1126.82011
[25] O. Schramm, Electronic Comm. Probab. 8 (2001) paper no. 12. Available from: <math.PR/0107096>
[26] Langlands, R.P.; Pichet, C.; Pouliot, Ph.; Saint-Aubin, Y., J. stat. phys., 67, 553, (1992)
[27] Watts, G., J. phys. A, 29, L363, (1996), Available from:
[28] J. Dubédat, Available from: <math.PR/0405074>
[29] Cardy, J., Phys. rev. lett., 84, 3507, (2000), Available from:
[30] Cardy, J., J. phys. A, 35, L565, (2002), Available from:
[31] V. Beffara. Available from: <math.PR/0211322>
[32] G.F. Lawler, O. Schramm, W. Werner, Electronic J. Probab. 7 (2002) paper no. 2. Available from: <math.PR/0108211>
[33] Belavin, A.A.; Polyakov, A.M.; Zamolodchikov, A.B., J. stat. phys., 34, 763, (1984)
[34] J. Cardy, in: J.-P. Françoise, G. Naber, T.S. Tsun, (Eds.), Encyclopedia of Mathematical Physics, Elsevier, Amsterdam, 2005 (to appear). Available from: <hep-th/0411189>
[35] Di Francesco, P.; Mathieu, P.; Senechal, D., Conformal field theory, (1997), Springer Berlin · Zbl 0869.53052
[36] Cardy, J., Phys. lett. B, 582, 121, (2004), Available from:
[37] J. Cardy. Available from: <math-ph/0412033>
[38] J. Dubédat, Ann. Probab. 33 (2005) 223; W. Werner, Ann. Fac. Sci. Toulouse 13 (6) (2004) 121
[39] M. Bauer, D. Bernard, J. Houdayer. Available from: <math-ph/0411038>
[40] R. Friedrich. Available from: <math-ph/0410029>; R.O. Bauer, R. Friedrich. Available from: <math.PR/0503178>
[41] Nagi, J.; Rasmussen, J., Nucl. phys. B, 704, 475, (2005), Available from:
[42] J. Rasmussen. Available from: <hep-th/0409026>; E. Bettelheim, I. Gruzberg, A.W.W. Ludwig, P. Wiegmann. Available from: <hep-th/0503013>
[43] M. Bauer, D. Bernard. Available from: <cond-mat/0412372>
[44] Hastings, M.; Levitov, L.S., Phys. D, 116, 244, (1998), Available from:
[45] Hastings, M., Phys. rev. lett., 88, 055506, (2002), Available from:
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.