zbMATH — the first resource for mathematics

Patterns in knot cohomology. I. (English) Zbl 1073.57007
Summary: We discuss Dror Bar-Natan’s experimental data on the cohomology groups of all prime knots with 11 or fewer crossings.

57M27 Invariants of knots and \(3\)-manifolds (MSC2010)
57M25 Knots and links in the \(3\)-sphere (MSC2010)
18G60 Other (co)homology theories (MSC2010)
57R56 Topological quantum field theories (aspects of differential topology)
Full Text: DOI EuDML arXiv
[1] DOI: 10.2140/agt.2002.2.337 · Zbl 0998.57016 · doi:10.2140/agt.2002.2.337
[2] Dunfield N., ”Jones Polynomial and Hyperbolic Volume.” · Zbl 1291.68140
[3] Garoufalidis S., ”A Conjecture on Khovanov’s Invariants.” (2001) · Zbl 1064.57019
[4] DOI: 10.1215/S0012-7094-00-10131-7 · Zbl 0960.57005 · doi:10.1215/S0012-7094-00-10131-7
[5] DOI: 10.2140/agt.2002.2.665 · Zbl 1002.57006 · doi:10.2140/agt.2002.2.665
[6] Lee E. S., ”The Support of the Khovanov’s Invariants for Alternating Knots.” (2002)
[7] DOI: 10.1007/978-1-4612-0691-0 · doi:10.1007/978-1-4612-0691-0
[8] Murasugi K., Osaka Math. J. 10 pp 181– (1958)
[9] Stoimenow A., ”Polynomials of Knots with Up to 10 Crossings.” (2001)
[10] DOI: 10.1007/BF01394334 · Zbl 0645.57007 · doi:10.1007/BF01394334
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.