zbMATH — the first resource for mathematics

Occurrence of multiple period-doubling bifurcation route to chaos in periodically pulsed chaotic dynamical systems. (English) Zbl 1073.37038
Summary: We consider the effect of discrete-time signal or periodically pulsed forcing on chaotic dynamical systems and show that the systems can undergo novel multiple period-doubling bifurcations prior to the onset of chaos, followed by a rich variety of dynamical phenomena including enlarged periodic windows, attractor crises, distinctly modified bifurcation structures and so on. Under certain circumstances, these systems also admit transcritical bifurcations preceding the onset of multiple period-doubling bifurcations. These properties are demonstrated for the case of Duffing oscillator. We also explain the occurrence of multiple period-doubling by means of a periodically forced logistic map.

37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
Full Text: DOI
[1] Guckenheimer, J.; Holmes, P., Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, (1983), Springer New York · Zbl 0515.34001
[2] Lichtenberg, A.J.; Lieberman, M.J., Regular and stochastic motion, (1983), Springer New York · Zbl 0506.70016
[3] Ott, E., Chaos in dynamical systems, (1993), Cambridge University Press New York · Zbl 0792.58014
[4] Lakshmanan, M.; Murali, K., Chaos in nonlinear oscillators: synchronization and controlling, (1996), World Scientific Singapore · Zbl 0868.58058
[5] Ott, E.; Grebogi, C.; Yorke, J.A.; Petrov, V.; Gaspar, V.; Masere, J.; Showalter, K.; Hunt, E.R., Phys rev lett, Nature (London), Phys rev lett, 67, 1953, (1991)
[6] Parthasarathy, S.; Sinha, S., Phys rev E, 51, 6239, (1995)
[7] Rajasekar, S.; Lakshmanan, M.; Pyragas, K.; Guemez, J.; Matias, M.A.; Lima, R.; Pettini, M.; Braiman, Y.; Goldhirsch, I., Physica D, Phys lett A, Phys lett A, Phys rev A, Phys rev lett, 66, 2545, (1991)
[8] Grebogi, C.; Ott, E.; Pelikan, S.; Yorke, J.A.; Venkatesan, A.; Lakshmanan, M., Physica D, Phys rev E, 58, 3008, (1998)
[9] Gammaitoni, L.; Hanggi, P.; Jung, P.; Marchesoni, F., Rev mod phys, 70, 223, (1998)
[10] Blümel, R.; Smilansky, U.; Heagy, J.; Yuan, J.M., Phys rev lett, Phys rev A, 41, 571, (1990)
[11] Summers, D.; Cranford, J.G.; Healy, B.P.; Henson, S.M., Chaos, solitons & fractals, Physica D, 140, 33, (2000)
[12] May, R.M.; May, R.M.; Oster, G.F., Nature (London), Am nat, 110, 573, (1976)
[13] Stone, L., Nature (London), 365, 617, (1993)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.