×

zbMATH — the first resource for mathematics

Threshold policies control for predator - prey systems using a control Liapunov function approach. (English) Zbl 1072.92054
Summary: The stability of predator-prey models, in the context of exploitation of renewable resources, subject to threshold policies (TP), is studied in this paper using the idea of backstepping and control Lyapunov functions (CLF) well known in control theory, as well as the concept of virtual equilibria. TPs are defined and analysed for different types of one and two species predator-prey models. The models studied are the single species Noy-Meir herbivore-vegetation model, in a grazing management context, as well as the Rosenzweig-MacArthur two species predator-prey model, in a fishery management context. TPs are shown to be versatile and useful in managing renewable resources, being simple to design and implement, and also yielding advantages in situations of overexploitation.

MSC:
92D40 Ecology
49N90 Applications of optimal control and differential games
91B76 Environmental economics (natural resource models, harvesting, pollution, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Augustine, D.J.; Frelich, L.E.; Jordan, P.A., Evidence for two alternate stable states in an ungulate grazing system, Ecol. appl., 8, 4, 1260-1269, (1998)
[2] Bagley, R.J.; Glass, L., Counting and classifying attractors in high dimensional dynamical systems, J. theor. biol., 183, 269-284, (1996)
[3] Beddington, J.R.; May, R.M., Maximum sustainable yields in systems subject to harvesting at more than one trophic level, Math. biosci., 51, 261-281, (1980) · Zbl 0439.92025
[4] Boukal, D.S.; Křivan, V., Lyapunov functions for lotka – volterra predator – prey models with optimal foraging behavior, J. math. biol., 39, 6, 493-517, (1999) · Zbl 0976.92021
[5] Brauer, F.; Soudack, A.C., Response of predator – prey systems to nutrient enrichment and proportional harvesting, Int. J. control, 27, 1, 65-86, (1978) · Zbl 0367.92011
[6] Brauer, F.; Soudack, A.C., Stability regions and transition phenomena for harvested predator – prey systems, J. math. biol., 7, 4, 319-337, (1979) · Zbl 0397.92019
[7] Brauer, F.; Soudack, A.C., Stability regions in predator – prey systems with constant-rate prey harvesting, J. math. biol., 8, 1, 55-71, (1979) · Zbl 0406.92020
[8] Brauer, F.; Soudack, A.C., Coexistence properties of some predator – prey systems under constant rate harvesting and stocking, J. math. biol., 12, 1, 101-114, (1981) · Zbl 0482.92015
[9] Brauer, F.; Soudack, A.C., On constant effort harvesting and stocking in a class of predator – prey systems, J. theor. biol., 95, 2, 247-252, (1982)
[10] Clark, C.W., Mathematical bioeconomicsthe optimal management of renewable resources, (1976), Wiley USA
[11] Clark, C.W., Bioeconomics modelling and fisheries management, (1985), Wiley USA
[12] Collie, J.S., Spencer, P.D., 1993. Management strategies for fish populations subject to long term environmental variability and depensatory predation. Technical Report 93-02, Alaska Sea Grant College, pp. 629-650.
[13] Colombo, R.M.; Křivan, V., Selective strategies in food webs, IMA J. math. med. biol., 10, 4, 281-291, (1993) · Zbl 0807.92025
[14] Costa, M.I.S.; Kaszkurewicz, E.; Bhaya, A.; Hsu, L., Achieving global convergence to an equilibrium population in predator – prey systems by the use of discontinuous harvesting policy, Ecol. model., 128, 89-99, (2000)
[15] Crépin, A.-S., 2002. Threshold effects in coral reef fisheries. Beijer Discussion Paper Series No. 166, http://www.handels.gu.se/econ/EEU/coral.pdf.
[16] Edwards, R., Analysis of continuous-time switching networks, Physica D, 146, 165-199, (2000) · Zbl 0986.94051
[17] Edwards, C., Spurgeon, S.K., 1998. Sliding Mode Control: Theory and Applications. Systems and Control Book Series, vol. 7. Taylor and Francis, London. · Zbl 0964.93019
[18] El-Owaidy, H.M.; Moniem, A.A., Switching effect of predation on global large size prey species exhibiting group defence, Appl. math. comput., 151, 2, 491-499, (2004) · Zbl 1041.92040
[19] Emel’yanov, S.V., Burovoi, I.A., Levada, F.Y., 1998. Control of Indefinite Nonlinear Dynamics Systems. Lecture Notes in Control and Information Sciences, vol. 231. Springer, Great Britain.
[20] Filippov, A.F., Differential equations with discontinuous righthand sides, (1988), Kluwer Academic Dordrecht · Zbl 0664.34001
[21] Gouzé, J.-L.; Sari, T., A class of piecewise linear differential equations arising in biological models, Dynamical system—an international journal, 17, 4, 299-316, (2002) · Zbl 1054.34013
[22] Heitschmidt, R.K., Stuth, J.W., 1991. Grazing Management: An Ecological Perspective. Timber Press, Portland, Oregon, available at http://cnrit.tamu.edu/rlem/textbook/textbook-fr.html.
[23] Hoekstra, J., Vanden Bergh, J.C.J.M., 2001. Harvesting and conservation in a predator – prey system. Discussion Paper TI 2001-24/3, Department of Spatial Economics, Tinbergen Institute, available at http:///www.tinberger.nl/discussionpapers/01024.pdf.
[24] Hogarth, W.L.; Norbury, J.; Cunning, I.; Sommers, K., Stability of a predator – prey model with harvesting, Ecol. model., 62, 1-3, 83-106, (1992)
[25] Imeson, R.J.; Van Den Bergh, J.C.J.M.; Hoekstra, J., Integrated models of fisheries management and policy, Environ. model. assessment, 7, 4, 259-271, (2002)
[26] Kappler, K.; Edwards, R.; Glass, L., Dynamics in high-dimensional model gene networks, Signal processing, 83, 789-798, (2003) · Zbl 1144.37467
[27] Kot, M., Elements of mathematical ecology, (2001), Cambridge University Press Cambridge
[28] Křivan, V., Optimal foraging and predator – prey dynamics, Theor. popul. biol., 49, 3, 265-290, (1996) · Zbl 0870.92019
[29] Křivan, V., Dynamic ideal free distributioneffects of optimal patch choice on predator – prey dynamics, Am. nat., 149, 1, 164-178, (1997)
[30] Křivan, V., Effects of optimal antipredator behavior of prey on predator – prey dynamicsthe role of refuges, Theor. popul. biol., 53, 2, 131-142, (1998) · Zbl 0945.92021
[31] Křivan, V.; Sikder, A., Optimal foraging and predator – prey dynamics II, Theor. popul. biol., 55, 2, 111-126, (1999) · Zbl 0920.92031
[32] Křivan, V.; Sirot, E., Searching for food or hoststhe influence of parasitoids behavior on host-parasitoid dynamics, Theor. popul. biol., 51, 3, 201-209, (1997) · Zbl 0883.92028
[33] Ludwig, D.; Jones, D.D.; Holling, C.S., Qualitative analysis of insect outbreak systemsthe spruce budworm and forest, J. anim. ecol., 47, 1, 315-332, (1978)
[34] Matsuda, H.; Kawasaki, K.; Shigesada, N.; Teramoto, E.; Ricciardi, L.M., Switching effect on the stability of the prey – predator system with three trophic levels, J. theor. biol., 122, 251-262, (1986)
[35] May, R.M., Predators that switch, Nature, 269, 103-104, (1977)
[36] May, R.M., Threshold and breakpoints in ecosystems with a multiplicity of stable states, Nature, 269, 471-477, (1977)
[37] Mestl, T.; Lemay, C.; Glass, L., Chaos in high-dimensional neural and gene networks, Physica D, 98, 33-52, (1996) · Zbl 0890.58054
[38] Mestl, T.; Bagley, R.J.; Glass, L., Common chaos in arbitrarily complex feedback networks, Phys. rev. lett., 79, 4, 653-656, (1997)
[39] Meza, M. E.M., Bhaya, A., Kaszkurewicz, E., 2002a. Control of one and two-species predator – prey models using continuous robust threshold policies. In: Annals of the 14th Brazilian Conference on Automatic Control (CBA). Natal, Brazil, paper number 517.pdf on CD-ROM, pp. 146-151.
[40] Meza, M.E.M., Bhaya, A., Kaszkurewicz, E., 2002b. Threshold policies in the control of ecological models. In: Proceedings of the 41st IEEE Conference on Decision and Control. Las Vegas, Nevada, USA, paper number 174_TuP05-6.pdf on CD-ROM, pp. 937-942.
[41] Meza, M.E.M., Costa, M. I.S., Bhaya, A., Kaszkurewicz, E., 2002c. Threshold policies in the control of predator – prey models. In: Preprints of the 15th Triennial World Congress (IFAC). Barcelona, Spain, paper number 817.pdf on Preprints CD-ROM, pp. 1-6.
[42] Noy-Meir, I., Stability of grazing systemsan application of predator – prey graphs, J. ecol., 63, 2, 459-481, (1975)
[43] Quinn, T.J.; Deriso, R.B., Quantitative fish dynamics. biological resource management series, (2000), Oxford University Press Oxford
[44] Sepulchre, R.; Janković, M.; Kokotović, P., Constructive nonlinear control. series on communications and control engineering (CCES), (1997), Springer London · Zbl 1067.93500
[45] Sontag, E.D., A ‘universal’ construction of Artstein’s theorem on nonlinear stabilization, Systems control lett., 13, 117-123, (1989) · Zbl 0684.93063
[46] Ströbele, W.J.; Wacker, H., The concept of sustainable yield in multi-species fisheries, Ecol. model., 53, 1-2, 61-74, (1991)
[47] Utkin, V.I., Sliding modes and their applications in variable structure systems, (1978), Mir Moscow · Zbl 0398.93003
[48] Utkin, V.I., Sliding modes in control and optimization, (1992), Springer Berlin · Zbl 0748.93044
[49] Van Baalen, M.; Křivan, V.; Van Rijn, P.C.J.; Sabelis, M.W., Alternative food, switching predators, and the persistence of predator – prey systems, Am. nat., 157, 5, 512-524, (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.