×

zbMATH — the first resource for mathematics

Discrete equations for physical and numerical compressible multiphase mixtures. (English) Zbl 1072.76594
Summary: We have recently proposed, in [J. Comput. Phys. 150, No. 2, 425–467 (1999; Zbl 0937.76053)], a compressible two-phase unconditionally hyperbolic model able to deal with a wide range of applications: interfaces between compressible materials, shock waves in condensed multiphase mixtures, homogeneous two-phase flows (bubbly and droplet flows) and cavitation in liquids. One of the difficulties of the model, as always in this type of physical problems, was the occurrence of non-conservative products. In the above cited paper, we have proposed a discretisation technique that was without any ambiguity only in the case of material interfaces, not in the case of shock waves. This model was extended to several space dimensions in [R. Saurel and O. Lemetayer, J. Fluid Mech. 431, 239–271 (2001; Zbl 1039.76069)]. In this paper, thanks to a deeper analysis of the model, we propose a class of schemes that are able to converge to the correct solution even when shock waves interact with volume fraction discontinuities. This analysis provides a more accurate estimate of closure terms, but also an accurate resolution method for the conservative fluxes as well as non-conservative terms even for situations involving discontinuous solutions. The accuracy of the model and method is clearly demonstrated on a sequence of difficult test problems.

MSC:
76M20 Finite difference methods applied to problems in fluid mechanics
76L05 Shock waves and blast waves in fluid mechanics
76N15 Gas dynamics (general theory)
76T99 Multiphase and multicomponent flows
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
Software:
HE-E1GODF
PDF BibTeX Cite
Full Text: DOI
References:
[1] R. Abgrall, L. Hallo, M. Papin, A numerical scheme for multidimensional multiphase compressible flows, Technical Report MAB 2002-34, Mathématiques Appliquées de Bordeaux, 2002 · Zbl 1276.76045
[2] Abgrall, R., How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach, J. comput. phys., 125, 150-160, (1996) · Zbl 0847.76060
[3] Baer, M.R.; Nunziato, J.W., A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials, Int. J. multiphase flows, 12, 861-889, (1986) · Zbl 0609.76114
[4] Bzil, J.B.; Menikoff, R.; Son, S.F.; Kapila, A.K.; Steward, D.S., Two-phase modeling of a deflagration—to detonation transition in granular materials: a critical examination of modeling issues, Phys. fluids, 11, 2, 378-402, (1999) · Zbl 1147.76317
[5] Dal Maso, G.; Le Floch, P.; Murat, F., Definition and weak stability of non-conservative products, J. math. pures appl., 74, 483, (1995)
[6] Delhaye, J.-M., Some issues related to the modelling of interfacial areas in gas – liquid flows I. the conceptual issues, C.R. acad. sci. II b, 329, 397-410, (2001) · Zbl 1056.76079
[7] Drew, D.A.; Passman, S.L., Theory of multicomponent fluids, Applied mathematical sciences, volume 135, (1998), Springer New York
[8] Embid, P.; Baer, M., Mathematical analysis of a two-phase model for reactive granular material, Continuum mech. thermodyn., 4, 279, (1992) · Zbl 0760.76096
[9] Embid, P.; Hunter, J.; Majda, A., Simplified asymptotic equations for the transition to detonation in reactive granular materials, SIAM J. appl. math., 52, 1199, (1992) · Zbl 0778.76093
[10] Gavrilyuk, S.; Saurel, R., A compressible multiphase flow model with microinertia, J. comput. phys., 175, 326-360, (2002)
[11] Godlewski, E.; Raviart, P.A., Hyperbolic systems of conservation laws, Applied mathematical sciences, vol. 118, (1995), Springer Berlin · Zbl 1155.76374
[12] Godunov, S.K.; Zabrodine, A.; Ivanov, M.; Kraiko, A.; Prokopov, G., Résolution numérique des problèmes multidimensionnels de la dynamique des gaz, (1979), Editions Mir Moscow · Zbl 0421.65056
[13] Gonthier, K.A.; Powers, J.M., A high-resolution numerical method for a two-phase model of deflagration-to-detonation transition, J. comput. phys., 163, 376-433, (2000) · Zbl 0995.76062
[14] Hou, T.Y.; Le Floch, P., Why non-conservative schemes converge to the wrong solution: error analysis, Math. comp., 62, 497-530, (1994) · Zbl 0809.65102
[15] Kapila, A.; Son, S.; Bdzil, J.; Menikoff, R.; Stewart, D., Two-phase modeling of DDT: structure of the velocity-relaxation zone, Phys. fluids, 9, 12, 3885-3897, (1997)
[16] Massoni, J.; Saurel, R.; Baudin, G.; Demol, G., A mechanistic model for shock to detonation transition in solid energetic materials, Phys. fluids, 11, 3, 710-736, (1999) · Zbl 1147.76456
[17] X. Rogue, Expériences et simulations d’écoulements diphasiques en tubes à choc, Ph.D. Thesis, Université de Provence, France, 1997
[18] Rogue, X.; Rodriguez, G.; Haas, J.F.; Saurel, R., Experimental and numerical investigation of the shock-induced fluidization of a particle bed, Shock waves, 8, 29-45, (1998) · Zbl 0899.76024
[19] L. Sainsaulieu, Contribution à la modélisation mathématique et numérique des écoulements diphasiques constitués d’un nuage de particules dans un écoulement de gaz, Thèse d’Habilitation à Diriger des Recherches, Université Paris VI, 1995
[20] Sainsaulieu, L., Travelling-wave solutions of convection – diffusion systems in nonconservation form, SIAM J. math. anal., 27, 5, 1286-1310, (1996) · Zbl 0861.35040
[21] Saurel, R.; Abgrall, R., A multiphase Godunov method for compressible multifluid and multiphase flows, J. comput. phys., 150, 425-467, (1999) · Zbl 0937.76053
[22] Saurel, R.; Abgrall, R., A simple method for compressible multifluid flows, SIAM J. sci. comp., 21, 3, 1115-1145, (1999) · Zbl 0957.76057
[23] Saurel, R.; Gavrilyuk, S.; Renaud, F., A multiphase model with internal degree of freedom, application to shock – bubble interaction, J. fluid. mech., (2003), (accepted) · Zbl 1080.76062
[24] Saurel, R.; LeMetayer, O., A multiphase model for compressible flows with interfaces, shocks, detonation waves and cavitation, J. fluid. mech., 431, 239-271, (2001) · Zbl 1039.76069
[25] Toro, E.F., Riemann solvers and numerical methods for fluid dynamics, (1997), Springer Berlin · Zbl 0888.76001
[26] Toumi, I., A weak formulation of roe’s approximate Riemann solver, J. comput. phys., 102, 360, (1992) · Zbl 0783.65068
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.