×

Geodesics and the Einstein nonlinear wave system. (English) Zbl 1072.58021

Summary: The system under consideration is Einstein’s equation \(R_{\mu\nu} ({\mathbf g})- g_{\mu\nu}R({\mathbf g})/2=8\pi{\mathbf G} T_{\mu\nu}\) for a pseudo-Riemannian metric \({\mathbf g}\) coupled to a semi-linear wave equation for a complex function \(\varphi\). Assume that this wave equation on Minkowski space admits a stable solitary wave of the type known as nontopological solitons. The system is studied in the scaling limit in which the solitons have small size \(\varepsilon\) and amplitude \(\delta\) with \(\delta\leq\delta_0\varepsilon^{7/4}\). It is proved that, for \(\varepsilon\) sufficiently small, given a solution of the vacuum Einstein equation, i.e., a Ricci flat pseudo-Riemannian metric \(\gamma\), there exists a finite time interval, independent of \(\varepsilon,\delta\), on which there is a solution of the full system \(({\mathbf g},\varphi)\) with \(({\mathbf g}-\gamma)\) small and \(\varphi\) close to a nontopological soliton centred on a time-like geodesic (in appropriate Sobolev norms).

MSC:

58J45 Hyperbolic equations on manifolds
35L70 Second-order nonlinear hyperbolic equations
83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Ahn, T.; Mackay, R.; Sepulchre, J.-A., Dynamics of relative phases: generalised multibreathers, Nonlinear Dynam., 25, 157-182 (2001) · Zbl 1015.70016
[2] Berestycki, H.; Lions, P. L., Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal., 82, 313-345 (1983) · Zbl 0533.35029
[3] Bronski, J.; Jerrard, R., Soliton dynamics in a potential, Math. Res. Lett., 7, 329-342 (2000) · Zbl 0955.35067
[4] Cantor, M., Some problems of global analysis on asymptotically simple manifolds, Compositio Math., 38, 1, 3-35 (1979) · Zbl 0402.58004
[5] Choquet-Bruhat, Y.; Christodoulou, D., Elliptic systems in \(H_{s,δ}\) spaces on manifolds which are Euclidean at infinity, Acta Math., 146, 1-2, 129-150 (1981) · Zbl 0484.58028
[6] Choquet-Bruhat, Y.; Fisher, A.; Marsden, J., Équations des contraintes sur une variété non compacte, C. R. Acad. Sci. Paris Sér. A-B, 284, 16, A975-A978 (1977) · Zbl 0364.58010
[7] Choquet-Bruhat, Y.; York, J. W., The Cauchy problem, (General Relativity and Gravitation (1980), Plenum: Plenum New York, London), 99-172
[8] Damour, T., New problems and new approximation methods in general relativity, (VIII International Congress on Mathematical Physics (1987), World Scientific: World Scientific Singapore), 57-72
[9] Damour, T., The problem of motion in Newtonian and Einsteinian gravity, (Three Hundred Years of Gravitation (1987), Cambridge Univ. Press), 128-198 · Zbl 0966.83509
[10] Damour, T., General relativity and experiment: a brief review, Classical Quantum Gravity, S, S55-S59 (1992)
[11] D’eath, P. D., Black Holes, Gravitational Interactions (1996), Oxford Univ. Press: Oxford Univ. Press Oxford · Zbl 0874.53057
[12] Einstein, A.; Infeld, L.; Hoffmann, B., The gravitational equations and the problem of motion, Ann. Math., 39, 65-100 (1938) · JFM 64.0769.01
[13] Fourès-Bruhat, Y., Théorème d’existence pour certains systèmes d’équations aux dérivées partielles non-linéaires, Acta Math., 88, 141-225 (1952) · Zbl 0049.19201
[14] Friedrich, H., On the global existence and asymptotic behaviour of solutions to the Einstein-Maxwell-Yang-Mills equations, J. Differential Geometry, 34, 275-345 (1991) · Zbl 0737.53070
[15] Friedrich, H., Hyperbolic reductions for Einstein’s equations, Classical Quantum Gravity, 13, 1451-1469 (1996) · Zbl 0851.58044
[16] Friedrich, H., The Cauchy problem for Einstein’s equation, (Lecture Notes in Phys., vol. 540 (2000)), 127-224 · Zbl 1006.83003
[17] Grillakis, M.; Shatah, J.; Strauss, W., Stability theory of solitary waves in the presence of symmetry. I, J. Funct. Anal., 74, 160-197 (1987) · Zbl 0656.35122
[18] Hawking, S.; Ellis, G., The Large Scale Structure of Space-Time (1973), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0265.53054
[19] Hughes, T.; Kato, T.; Marsden, J., Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity, Arch. Rational Mech. Anal., 63, 273-294 (1976) · Zbl 0361.35046
[20] Huisken, G.; Yau, S. T., Definition of the center of mass for isolated physical systems and unique foliations by stable spheres with constant mean curvature, Invent. Math., 124, 281-311 (1996) · Zbl 0858.53071
[21] Keraani, S., Semiclassical limit of a class of Schrödinger equations with potential, Comm. Partial Differential Equations, 27, 693-704 (2002) · Zbl 0998.35052
[22] R. Mackay, Lectures on slow manifolds, Preprint, 2003, University of Warwick; R. Mackay, Lectures on slow manifolds, Preprint, 2003, University of Warwick
[23] Majda, A. J., Compressible Fluid Flow and Systems of Conservation Laws (1984), Springer-Verlag: Springer-Verlag New York · Zbl 0537.76001
[24] Marsden, J., Lectures on Mechanics, London Math. Soc. Lecture Note Ser., vol. 174 (1992), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0744.70004
[25] Mcleod, K., Uniqueness of positive radial solutions of Δ \(u+f(u)=0\) in \(R^n\), Trans. Amer. Math. Soc., 339, 495-505 (1993) · Zbl 0804.35034
[26] Rendall, A., Theorems on existence and global dynamics for the Einstein equations, Living Rev. Relativ., 5, 1-62 (2002) · Zbl 1024.83009
[27] Shatah, J., Stable standing waves of nonlinear Klein-Gordon equations, Comm. Math. Phys., 91, 313-327 (1983) · Zbl 0539.35067
[28] Shatah, J.; Strauss, W., Instability of nonlinear bound states, Comm. Math. Phys., 100, 173-190 (1985) · Zbl 0603.35007
[29] Strauss, W., Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55, 149-162 (1977) · Zbl 0356.35028
[30] D.M.A. Stuart, Non-topological solitons on pseudo-Riemannian manifolds, Ann. Sci. École Norm. Sup. (4), submitted for publication; D.M.A. Stuart, Non-topological solitons on pseudo-Riemannian manifolds, Ann. Sci. École Norm. Sup. (4), submitted for publication · Zbl 0968.35079
[31] Stuart, D. M.A., Solitons on pseudo-Riemannian manifolds: stability and motion, Electron. Res. Announc. Amer. Math. Soc., 6, 75-89 (2000) · Zbl 0959.58038
[32] Stuart, D. M.A., Modulational approach to stability of non-topological solitons in semilinear wave equations, J. Math. Pures Appl., 80, 1, 51-83 (2001) · Zbl 1158.35389
[33] Stuart, D. M.A., Geodesics and the Einstein-nonlinear wave system, C. R. Acad. Sci. Paris Sér. I, 336, 615-618 (2003) · Zbl 1038.35139
[34] Taylor, M. E., Pseudo-Differential Operators and Nonlinear PDE (1991), Birkhäuser: Birkhäuser Boston · Zbl 0746.35062
[35] Weinberg, S., Gravitation and Cosmology (1972), Wiley: Wiley New York
[36] Weinstein, M. I., Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal., 16, 472-491 (1985) · Zbl 0583.35028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.