×

zbMATH — the first resource for mathematics

A statistical complexity measure with nonextensive entropy and quasi-multiplicativity. (English) Zbl 1071.94005
Summary: The properties of a statistical complexity measure that are characterized by nonextensivity in entropy have been investigated, which is of so-called disequilibrium type. Considering the composition law for two systems with different nonextensivities (quasi-multiplicativity), a nontrivial relation between the nonextensive parameters and the fluctuating bit number in information theory has been mentioned. To see the time evolution of the nonextensive complexity measure, we examine systems having a lognormal distribution, the underlying dynamics for which is known to obey a random multiplicative process in the presence of a boundary constraint.

MSC:
94A17 Measures of information, entropy
82C03 Foundations of time-dependent statistical mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1002/cplx.6130010105 · Zbl 0881.00006 · doi:10.1002/cplx.6130010105
[2] Gell-Mann M., Complexity 2 pp 44– (1996) · Zbl 1294.94011 · doi:10.1002/(SICI)1099-0526(199609/10)2:1<44::AID-CPLX10>3.0.CO;2-X
[3] DOI: 10.1145/321356.321363 · Zbl 0158.25301 · doi:10.1145/321356.321363
[4] DOI: 10.1145/321356.321363 · Zbl 0158.25301 · doi:10.1145/321356.321363
[5] Lempel A., IEEE Trans. Inf. Theory 22 pp 75– (1976) · Zbl 0337.94013 · doi:10.1109/TIT.1976.1055501
[6] Grassberger P., Int. J. Theor. Phys. 25 pp 907– (1986) · Zbl 0605.94003 · doi:10.1007/BF00668821
[7] Lloyd S., Ann. Phys. (N.Y.) 188 pp 186– (1988) · doi:10.1016/0003-4916(88)90094-2
[8] López-Ruiz R., Phys. Lett. A 209 pp 321– (1995) · doi:10.1016/0375-9601(95)00867-5
[9] DOI: 10.1103/PhysRevE.59.1459 · doi:10.1103/PhysRevE.59.1459
[10] Costa M., Phys. Rev. Lett. 89 pp 068102– (2002) · doi:10.1103/PhysRevLett.89.068102
[11] Scafetta N., Fractals 9 pp 193– (2001) · Zbl 04566652 · doi:10.1142/S0218348X0100052X
[12] DOI: 10.1016/S0375-9601(97)00855-4 · Zbl 1026.82505 · doi:10.1016/S0375-9601(97)00855-4
[13] DOI: 10.1007/BF01016429 · Zbl 1082.82501 · doi:10.1007/BF01016429
[14] Tsallis C., Chaos, Solitons Fractals 13 pp 371– (2002) · Zbl 1012.82003 · doi:10.1016/S0960-0779(01)00019-4
[15] Catalán R. G., Phys. Rev. E 66 pp 011102– (2002) · doi:10.1103/PhysRevE.66.011102
[16] Tsallis C., Physica A 305 pp 1– (2002) · Zbl 0986.82001 · doi:10.1016/S0378-4371(01)00633-1
[17] Brukner C., Phys. Rev. A 63 pp 022113– (2001) · doi:10.1103/PhysRevA.63.022113
[18] DOI: 10.1088/0305-4470/31/23/011 · Zbl 0923.33012 · doi:10.1088/0305-4470/31/23/011
[19] DOI: 10.1088/0305-4470/31/23/011 · Zbl 0923.33012 · doi:10.1088/0305-4470/31/23/011
[20] DOI: 10.1088/0305-4470/31/23/011 · Zbl 0923.33012 · doi:10.1088/0305-4470/31/23/011
[21] Anteneodo C., Phys. Lett. A 223 pp 348– (1996) · Zbl 1037.82500 · doi:10.1016/S0375-9601(96)00756-6
[22] Callbet X., Phys. Rev. E 63 pp 066116– (2001) · doi:10.1103/PhysRevE.63.066116
[23] I. Varga and J. Pipek, cond-mat/0204041; · doi:10.1103/PhysRevA.46.3148
[24] DOI: 10.1103/PhysRevA.46.3148 · doi:10.1103/PhysRevA.46.3148
[25] Beck C., Europhys. Lett. 57 pp 329– (2002) · doi:10.1209/epl/i2002-00464-8
[26] Levy M., Int. J. Mod. Phys. C 7 pp 595– (1996) · doi:10.1142/S0129183196000624
[27] Levy M., Int. J. Mod. Phys. C 7 pp 745– (1996) · doi:10.1142/S0129183196000624
[28] Sornette D., J. Phys. I 7 pp 431– (1997) · doi:10.1051/jp1:1997169
[29] DOI: 10.1103/PhysRevLett.63.105 · doi:10.1103/PhysRevLett.63.105
[30] Crutchfield J. P., Phys. Rev. E 62 pp 2996– (2000) · doi:10.1103/PhysRevE.62.2996
[31] Binder P.-M., Phys. Rev. E 62 pp 2998– (2000) · doi:10.1103/PhysRevE.62.2998
[32] Shiner J. S., Phys. Rev. E 62 pp 3000– (2000) · doi:10.1103/PhysRevE.62.3000
[33] Abe S., Phys. Lett. A 281 pp 126– (2001) · Zbl 0974.82021 · doi:10.1016/S0375-9601(01)00127-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.