×

Gravitational lensing from a spacetime perspective. (English) Zbl 1071.83009

Summary: The theory of gravitational lensing is reviewed from a spacetime perspective, without quasi-Newtonian approximations. More precisely, the review covers all aspects of gravitational lensing where light propagation is described in terms of lightlike geodesics of a metric of Lorentzian signature. It includes the basic equations and the relevant techniques for calculating the position, the shape, and the brightness of images in an arbitrary general-relativistic spacetime. It also includes general theorems on the classification of caustics, on criteria for multiple imaging, and on the possible number of images. The general results are illustrated with examples of spacetimes where the lensing features can be explicitly calculated, including the Schwarzschild spacetime, the Kerr spacetime, the spacetime of a straight string, plane gravitational waves, and others.

MSC:

83C10 Equations of motion in general relativity and gravitational theory
83-02 Research exposition (monographs, survey articles) pertaining to relativity and gravitational theory
PDF BibTeX XML Cite
Full Text: DOI arXiv EuDML Link

References:

[1] Abramowicz, MA, Centrifugal force: a few surprises, Mon. Not. R. Astron. Soc., 245, 733-746 (1990) · Zbl 0711.70022
[2] Abramowicz, MA, Relativity of inwards and outwards: an example, Mon. Not. R. Astron. Soc., 256, 710-718 (1992)
[3] Abramowicz, MA; Bengtsson, I.; Karas, V.; Rosquist, K., Poincaré ball embeddings of the optical geometry, Class. Quantum Grav., 19, 3963-3976 (2002) · Zbl 1005.83018
[4] Abramowicz, MA; Carter, B.; Lasota, JP, Optical reference geometry for stationary and static dynamics, Gen. Relativ. Gravit., 20, 1172-1183 (1988) · Zbl 0658.53072
[5] Abramowicz, MA; Lasota, JP, A note on a paradoxical property of the Schwarzschild solution, Acta Phys. Pol., B5, 327-329 (1974)
[6] Abramowicz, MA; Prasanna, AR, Centrifugal force reversal near a Schwarzschild black hole, Mon. Not. R. Astron. Soc., 245, 720-728 (1990)
[7] Alsing, PM, The optical-mechanical analogy for stationary metrics in general relativity, Am. J. Phys., 66, 779-790 (1998)
[8] Ames, WL; Thorne, KS, The optical appearance of a star that is collapsing through its gravitational radius, Astrophys. J., 151, 659-670 (1968)
[9] Anderson, MR; Kochanek, CS; Hewitt, JN, Gravitational lensing by curved cosmic strings, Astrophysical Applications of Gravitational Lensing: Proceedings of the 173rd Symposium of the International Astronomical Union, 377-378 (1996), Dordrecht, Netherlands: Kluwer, Dordrecht, Netherlands
[10] Ansorg, M., Timelike geodesic motions within the general relativistic gravitational field of the rigidly rotating disk of dust, J. Math. Phys., 39, 5984-6000 (1998) · Zbl 0927.53046
[11] Arnold, VI; Gusein-Zade, SM; Varchenko, AN, Singularities of Differentiable Maps. Vol. 1: The Classification of Critical Points, Caustics and Wave Fronts (1985), Boston, U.S.A.: Birkhauser, Boston, U.S.A.
[12] Asaoka, I., X-ray spectra at infinity from a relativistic accretion disk around a Kerr black hole, Publ. Astron. Soc. Japan, 41, 763-778 (1989)
[13] Atkinson, RDE, On light tracks near a very massive star, Astron. J., 70, 517-523 (1965)
[14] Bao, G.; Hadrava, P.; Ostgaard, E., Emission-line profiles from a relativistic accretion disk and the role of its multiple images, Astrophys. J., 435, 55-65 (1994)
[15] Bao, G.; Hadrava, P.; Ostgaard, E., Multiple images and light curves of an emitting source on a relativistic eccentric orbit around a black hole, Astrophys. J., 425, 63-71 (1994)
[16] Bardeen, JM; DeWitt, C.; DeWitt, BS, Timelike and null geodesics in the Kerr metric, Black Holes. Les Astres Occlus. École d’été de Physique Théorique, Les Houches 1972, 215-239 (1973), New York, U.S.A.: Gordon and Breach, New York, U.S.A.
[17] Bardeen, JM; Cunningham, CT, The optical appearance of a star orbiting an extreme Kerr black hole, Astrophys. J., 183, 237-264 (1973)
[18] Bardeen, JM; Wagoner, RV, Uniformly rotating disks in general relativity, Astrophys. J. Lett., 158, L65-L69 (1969)
[19] Bardeen, JM; Wagoner, RV, Relativistic disks. I. Uniform rotation, Astrophys. J., 167, 359-423 (1971)
[20] Barraco, D.; Kozameh, CN; Newman, ET; Tod, P., Geodesic Deviation and Minikowski Space, Gen. Relativ. Gravit., 22, 1009-1019 (1990) · Zbl 0713.53013
[21] Barriola, M.; Vilenkin, A., Gravitational field of a global monopole, Phys. Rev. Lett., 63, 341-343 (1989)
[22] Bartelmann, M.; Schneider, P., Weak Gravitational Lensing, Phys. Rep., 340, 291-472 (2001) · Zbl 0971.83518
[23] Bazanski, SL; Rembieliński, J., Some properties of light propagation in relativity, Particles, Fields, and Gravitation, 421-430 (1998), Woodbury, U.S.A.: American Institute of Physics, Woodbury, U.S.A. · Zbl 0977.83008
[24] Bazanski, SL; Jaranowski, P., Geodesic deviation in the Schwarzschild space-time, J. Math. Phys., 30, 1794-1803 (1989) · Zbl 0698.53054
[25] Beem, J.; Ehrlich, P.; Easley, K., Global Lorentzian Geometry (1996), New York, U.S.A.: Dekker, New York, U.S.A. · Zbl 0846.53001
[26] Bernal, A.N., and Sánchez, M., “Smoothness of time functions and the metric splitting of globally hyperbolic spacetimes”, (January, 2004), [Online Los Alamos Archive Preprint]: cited on 30 May 2004, http://arXiv.org/abs/gr-qc/0401112. 3 · Zbl 1081.53059
[27] Bernal, AN; Snanchez, M., On smooth Cauchy hypersurfaces and Geroch’s splitting theorem, Commun. Math. Phys., 243, 461-470 (2003) · Zbl 1085.53060
[28] Berry, MV; Upstill, C., Catastrophe optics: Morphologies of caustics and their diffraction patterns, 257-346 (1980), Amsterdam, Netherlands: North-Holland, Amsterdam, Netherlands
[29] Bezerra, VB, Gravitational analogue of the Aharonov-Bohm effect in four and three dimensions, Phys. Rev. D, 35, 2031-2033 (1987)
[30] Bilić, N.; Nikolić, H.; Viollier, RD, Fermion stars as gravitational lenses, Astrophys. J., 537, 909-915 (2000)
[31] Birch, P., Is the universe rotating?, Nature, 298, 451-454 (1982)
[32] Blake, C.; Wall, J., A velocity dipole in the distribution of radio galaxies, Nature, 416, 150-152 (2002)
[33] Blandford, R.; Narayan, R., Fermat’s principle, caustics, and the classification of gravitational lens images, Astrophys. J., 310, 568-582 (1986)
[34] Blandford, RD, The future of gravitational optics, Publ. Astron. Soc. Pac., 113, 1309-1311 (2001)
[35] Born, M.; Wolf, E., Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (2002), Cambridge, U.K.: Cambridge University Press, Cambridge, U.K.
[36] Boyer, RH; Lindquist, RW, Maximal analytic extension of the Kerr metric, J. Math. Phys., 8, 265-281 (1967) · Zbl 0149.23503
[37] Bozza, V., Gravitational lensing in the strong field limit, Phys. Rev. D, 66, 103001 (2002)
[38] Bozza, V., Quasiequatorial gravitational lensing by spinning black holes in the strong field limit, Phys. Rev. D, 67, 103006 (2003)
[39] Bozza, V.; Capozziello, S.; Iovane, G.; Scarpetta, G., Strong field limit of black hole gravitational lensing, Gen. Relativ. Gravit., 33, 1535-1548 (2001) · Zbl 1009.83027
[40] Bozza, V.; Mancini, L., Time delay in black hole gravitational lensing as a distance estimator, Gen. Relativ. Gravit., 36, 435-450 (2004) · Zbl 1036.83015
[41] Brill, D.; Farnsworth, D.; Fink, J.; Porter, J.; Thompson, A., A simple derivation of the general redshift formula, Methods of local and global differential geometry in general relativity: Proceedings of the Regional Conference on Relativity held at the University of Pittsburgh, Pittsburgh, Pennsylvania, July 13-17, 1970, 45-47 (1972), Berlin, Germany; New York, U.S.A.: Springer, Berlin, Germany; New York, U.S.A.
[42] Brill, D.; Israel, W., Observational contacts of general relativity, Relativity, Astrophysics, and Cosmology: Proceedings of the Summer School held 14-26 August 1972 at the Banff Centre, Banff, Alberta, 127-152 (1973), Dordrecht, Netherlands; Boston, U.S.A.: Reidel, Dordrecht, Netherlands; Boston, U.S.A.
[43] Brinkmann, HW, Einstein spaces which are mapped conformally on each other, Math. Ann., 94, 119-145 (1925) · JFM 51.0568.03
[44] Bromley, BC; Melia, F.; Liu, S., Polarimetric Imaging of the Massive Black Hole at the Galactic Center, Astrophys. J. Lett., 555, L83-L86 (2001)
[45] Bruckman, W.; Esteban, EP, An alternative calculation of light bending and time delay by a gravitational field, Am. J. Phys., 61, 750-754 (1993)
[46] Budic, R.; Sachs, RK; Cahen, M.; Flato, M., Scalar time functions: differentiability, Differential Geometry and Relativity: A volume in honour of André Lichnerowicz on his 60th birthday, 215-224 (1976), Dordrecht, Netherlands; Boston, U.S.A.: Reidel, Dordrecht, Netherlands; Boston, U.S.A.
[47] Calvani, M.; de Felice, F., Vortical null orbits, repulsive barriers, energy confinement in Kerr metric, Gen. Relativ. Gravit., 9, 889-902 (1978) · Zbl 0444.53049
[48] Calvani, M.; de Felice, F.; Nobili, L., Photon trajectories in the Kerr-Newman metric, J. Phys. A, 13, 3213-3219 (1980)
[49] Calvani, M.; Nobili, L.; de Felice, F., Are naked singularities really visible?, Lett. Nuovo Cimento, 23, 539-542 (1978)
[50] Calvani, M.; Turolla, R., Complete description of photon trajectories in the Kerr-Newman space-time, J. Phys. A, 14, 1931-1942 (1981)
[51] Candela, AM; Flores, JL; Snanchez, M., On general plane fronted waves. Geodesics, Gen. Relativ. Gravit., 35, 631-649 (2003) · Zbl 1200.58014
[52] Carathéodory, C., Calculus of variations and partial differential equations of the first order (1982), New York, U.S.A.: Chelsea Publishing, New York, U.S.A.
[53] Carter, B., Global structure of the Kerr family of gravitational fields, Phys. Rev., 174, 1559-1571 (1968) · Zbl 0167.56301
[54] Chandrasekhar, S., The Mathematical Theory of Black Holes (1983), Oxford, U.K.: Clarendon Press, Oxford, U.K. · Zbl 0511.53076
[55] Chetouani, L.; Clnement, G., Geometrical optics in the Ellis geometry, Gen. Relativ. Gravit., 16, 111-119 (1984)
[56] Chrobok, T.; Perlick, V., Classification of image distortions in terms of Petrov types, Class. Quantum Grav., 18, 3059-3079 (2001) · Zbl 1056.83009
[57] Chruściel, P.; Galloway, G., Horizons non-differentiable on a dense set, Commun. Math. Phys., 193, 449-470 (1998) · Zbl 0924.53062
[58] Clarke, CJS; Ellis, GFR; Vickers, JA, The large-scale bending of cosmic strings, Class. Quantum Grav., 7, 1-14 (1990) · Zbl 0707.53056
[59] Claudel, C-M; Virbhadra, KS; Ellis, GFR, The geometry of photon surfaces, J. Math. Phys., 42, 818-838 (2001) · Zbl 1061.83525
[60] Clément, G., Stationary solutions in three-dimensional general relativity, Int. J. Theor. Phys., 24, 267-275 (1985)
[61] Connors, PA; Stark, RF, Observable gravitational effects on polarised radiation coming from near a black hole, Nature, 269, 128-129 (1977)
[62] Cowling, SA, Triangulation lines in stationary space-times with axial symmetry, Astrophys. Space Sci., 95, 79-85 (1983)
[63] Cowling, SA, Gravitational light deflection in the Solar System, Mon. Not. R. Astron. Soc., 209, 415-427 (1984)
[64] Cramer, JG; Forward, RL; Morris, MS; Visser, M.; Benford, G.; Landis, G., Natural wormholes as gravitational lenses, Phys. Rev. D, 51, 3117-3120 (1996)
[65] Cunningham, CT, The effects of redshifts and focusing on the spectrum of an accretion disk around a Kerr black hole, Astrophys. J., 202, 788-802 (1975)
[66] Cunningham, CT, Optical appearance of distant objects to observers near and inside a Schwarzschild black hole, Phys. Rev. D, 12, 323-328 (1975)
[67] Cunningham, CT; Bardeen, JM, The optical appearance of a star orbiting an extreme Kerr black hole, Astrophys. J. Lett., 173, L137-L142 (1972)
[68] Dabrowski, MP; Osarczuk, J.; Kayser, R.; Schramm, T.; Nieser, L., Gravitational lensing properties of the Reissner-Nordström type neutron star, Gravitational Lenses: Proceedings of a conference held in Hamburg, 366 (1992), Berlin, Germany; New York, U.S.A.: Springer, Berlin, Germany; New York, U.S.A.
[69] Daabrowski, MP; Osarczuk, J., Light curves of relativistic charged neutron star, Astrophys. Space Sci., 229, 139-155 (1995) · Zbl 0840.53075
[70] Daabrowski, MP; Schunck, FE, Boson stars as gravitational lenses, Astrophys. J., 535, 316-324 (2000)
[71] Daabrowski, MP; Stelmach, J., A redshift-magnitude formula for the universe with cosmological constant and radiation pressure, Astron. J., 92, 1272-1277 (1986)
[72] Darwin, CG, The gravity field of a particle, Proc. R. Soc. London, Ser. A, 249, 180-194 (1958)
[73] Darwin, CG, The gravity field of a particle. II, Proc. R. Soc. London, Ser. A, 263, 39-50 (1961) · Zbl 0108.40901
[74] Dautcourt, G., Spacetimes admitting a universal redshift function, Astron. Nachr., 308, 293-298 (1987)
[75] de Felice, F.; Nobili, L.; Calvani, M., Blackhole physics: some effects of gravity on the radiation emission, Astron. Astrophys., 30, 111-118 (1974)
[76] De Paolis, F.; Geralico, A.; Ingrosso, G.; Nucita, AA, The black hole at the galactic center as a possible retro-lens for the S2 orbiting star, Astron. Astrophys., 409, 809-812 (2003) · Zbl 1060.85501
[77] Deser, S.; Jackiw, R.; ’t Hooft, G., Three-dimensional Einstein gravity: dynamics of flat space, Ann. Phys. (N.Y.), 152, 220-235 (1984)
[78] Dold, A., Lectures on Algebraic Topology (1980), Berlin, Germany; New York, U.S.A.: Springer, Berlin, Germany; New York, U.S.A. · Zbl 0234.55001
[79] Dowker, JS; Kennedy, G., Finite temperature and boundary effects in static spacetimes, J. Phys. A, 11, 895-920 (1978)
[80] Droste, J., The field of a single centre in Einstein’s theory of gravitation, and the motion of a particle in that field, Proc. K. Ned. Akad. Wetensch., 19, 197 (1916)
[81] Dultzin-Hacyan, D.; Hacyan, S., Comments on the optical appearance of white holes, Rev. Mex. Astron. Astr., 2, 263-268 (1977)
[82] Durrer, R., Gauge invariant cosmological perturbation theory. A general study and its application to the texture scenario of structure formation (1994), Lausanne, Switzerland: Gordon and Breach, Lausanne, Switzerland
[83] Dwivedi, IH, Photon redshift and the appearance of a naked singularity, Phys. Rev. D, 58, 064004 (1998)
[84] Dwivedi, IH; Kantowski, R.; Farnsworth, D.; Fink, J.; Porter, J.; Thompson, A., The luminosity of a collapsing star, Methods of Local and Global Differential Geometry in General Relativity: Proceedings of the Regional Conference on Relativity held at the University of Pittsburgh, Pittsburgh, Pennsylvania, July 13-17, 1970, 126-130 (1972), Berlin, Germany; New York, U.S.A.: Springer, Berlin, Germany; New York, U.S.A.
[85] Dyer, CC, Optical scalars and the spherical gravitational lens, Mon. Not. R. Astron. Soc., 180, 231-242 (1977)
[86] Dyer, CC; Roeder, RC, The distance-redshift relation for universes with no intergalactic medium, Astrophys. J. Lett., 174, L115-L117 (1972)
[87] Dyer, CC; Roeder, RC, Distance-redshift relations for universes with some intergalactic medium, Astrophys. J. Lett., 180, L31-L34 (1973)
[88] Ehlers, J., Zum Übergang von der Wellenoptik zur geometrischen Optik in der allgemeinen Relativitatstheorie, Z. Naturforsch., 22a, 1328-1323 (1967)
[89] Ehlers, J.; Israel, W., Survey of general relativity theory, Relativity, Astrophysics, and Cosmology: Proceedings of the summer school held 14-26 August 1972 at the Banff Centre, Banff, Alberta, 1-125 (1973), Dordrecht, Netherlands; Boston, U.S.A.: Reidel, Dordrecht, Netherlands; Boston, U.S.A.
[90] Ehlers, J., Foundations of gravitational lens theory. (Geometry of light cones), Ann. Phys. (Leipzig), 9, 307-320 (2000) · Zbl 1020.83013
[91] Ehlers, J.; Frittelli, S.; Newman, ET; Ashtekar, A.; Cohen, R.; Howard, D.; Renn, J.; Sarkar, S.; Shimony, A., Gravitational lensing from a spacetime perspective, Revisiting the foundations of relativistic physics: Festschrift in honor of John Stachel (2003), Dordrecht, Netherlands; Boston, U.S.A.: Kluwer, Dordrecht, Netherlands; Boston, U.S.A.
[92] Ehlers, J.; Kundt, W.; Witten, L., Exact solutions of gravitational field equations, Gravitation: an introduction to current research, 49-101 (1962), New York, U.S.A.: Wiley, New York, U.S.A.
[93] Ehlers, J.; Newman, ET, The theory of caustics and wave front singularities with physical applications, J. Math. Phys., 41, 3344-3378 (2000) · Zbl 0974.58037
[94] Ehrlich, P.; Emch, G., Gravitational waves and causality, Rev. Math. Phys., 4, 163-221 (1992) · Zbl 0772.53040
[95] Ehrlich, P.; Emch, G.; Greene, R.; Yau, ST, Geodesic and causal behavior of gravitational plane waves: astigmatic conjugacy, Differential Geometry. Pt. 2: Geometry in Mathematical Physics and Related Topics, 203-209 (1993), Providence, U.S.A.: American Mathematical Society, Providence, U.S.A. · Zbl 0795.53060
[96] Eiroa, EF; Romero, GE; Torres, DF, Reissner-Nordström black hole lensing, Phys. Rev. D, 66, 024010 (2002)
[97] Ellis, GFR; Sachs, RK, Relativistic cosmology, General Relativity and Cosmology: Proceedings of the 47th International School of Physics “Enrico Fermi”, Varena, Italy, 30th June-12 July 1969, 104-182 (1971), New York, U.S.A.: Academic Press, New York, U.S.A.
[98] Ellis, GFR, Limits to verification in cosmology, Ann. N.Y. Acad. Sci., 336, 130-160 (1980)
[99] Ellis, GFR; Bassett, BACC; Dunsby, PKS, Lensing and caustic effects on cosmological distances, Class. Quantum Grav., 15, 2345-2361 (1998) · Zbl 0964.83034
[100] Ellis, GFR; Nel, SD; Maartens, R.; Stoeger, WR; Whitman, AP, Ideal observational cosmology, Phys. Rep., 124, 315-417 (1985)
[101] Ellis, GFR; van Elst, H.; Harvey, A., Deviation of geodesics in FLRW spacetime geometries, On Einstein’s path. Essays in honor of Engelbert Schucking, 203 (1999), New York, U.S.A.: Springer, New York, U.S.A. · Zbl 0978.53054
[102] Ellis, HG, Ether flow through a drainhole: A particle model in general relativity, J. Math. Phys., 14, 104-118 (1973)
[103] von Eshleman, R., Gravitational lens of the sun — Its potential for observations and communications over interstellar distances, Science, 205, 1133-1135 (1979)
[104] Etherington, IMH, On the definition of distance in general relativity, Philos. Mag. and J. of Science, 15, 761-773 (1933) · Zbl 0006.37502
[105] Evans, J.; Islam, A.; Nandi, KK, The optical-mechanical analogy in general relativity: Exact Newtonian forms for the equation of motion of particles and photons, Gen. Relativ. Gravit., 28, 413-439 (1996) · Zbl 0851.53061
[106] Evans, J.; Nandi, KK; Islam, A., The optical-mechanical analogy in general relativity: New methods for the paths of light and of the planets, Am. J. Phys., 64, 1404-1415 (1006)
[107] Falcke, H.; Hehl, FW, The galactic black hole (2003), Bristol, U.K.: IOP, Bristol, U.K.
[108] Falcke, H.; Melia, F.; Agol, E., Viewing the shadow of the black hole at the galactic center, Astrophys. J. Lett., 528, L13-L16 (2000)
[109] Fanton, C.; Calvani, M.; de Felice, F.; Cadez, A., Detecting accretion disks in active galactic nuclei, Publ. Astron. Soc. Japan, 49, 159-169 (1997)
[110] Faraoni, V., Nonstationary gravitational lenses and the Fermat principle, Astrophys. J., 398, 425-428 (1992)
[111] Faraoni, V., Multiple imaging by gravitational waves, Int. J. Mod. Phys. D, 7, 409-429 (1998) · Zbl 0938.83007
[112] Faulkner, J.; Hoyle, F.; Narlikar, JV, On the behavior of radiation near massive bodies, Astrophys. J., 140, 1100-1105 (1964) · Zbl 0128.21503
[113] Federer, H., Geometric measure theory (1969), Berlin, Germany; New York, U.S.A.: Springer, Berlin, Germany; New York, U.S.A. · Zbl 0176.00801
[114] Flamm, L., Beiträge zur Einsteinschen Gravitationstheorie, Phys. Z., 17, 448-453 (1916) · JFM 46.1314.02
[115] Ford, LH; Vilenkin, A., A gravitational analogue of the Aharonov-Bohm effect, J. Phys. A, 14, 2353-2357 (1981)
[116] Frankel, T., Gravitational Curvature: An Introduction to Einstein’s Theory (1979), San Francisco, U.S.A.: Freeman, San Francisco, U.S.A. · Zbl 0427.53009
[117] Frauendiener, J., “Conformal infinity”, Living Rev. Relativity, 3, lrr-2000-4, (2000), [Online article]: cited on 30 October 2003, http://www.livingreviews.org/lrr-2000-4. 3.4, 3.4 · Zbl 0964.83001
[118] Friedrich, H.; Stewart, J., Characteristic initial data and wavefront singularities in general relativity, Proc. R. Soc. London, Ser. A, 385, 345-371 (1983) · Zbl 0513.58043
[119] Frittelli, S.; Kling, TP; Newman, ET, Spacetime perspective of Schwarzschild lensing, Phys. Rev. D, 61, 064021 (2000)
[120] Frittelli, S.; Kling, TP; Newman, ET, Image distortion from optical scalars in non-perturbative gravitational lensing, Phys. Rev. D, 63, 023007 (2001)
[121] Frittelli, S.; Kling, TP; Newman, ET, Image distortion in nonperturbative gravitational lensing, Phys. Rev. D, 63, 023006 (2001)
[122] Frittelli, S.; Kling, TP; Newman, ET, Fermat potentials for nonperturbative gravitational lensing, Phys. Rev. D, 65, 123007 (2002)
[123] Frittelli, S.; Newman, ET, Exact universal gravitational lensing equation, Phys. Rev. D, 59, 124001 (1999)
[124] Frittelli, S.; Newman, ET, Dynamics of Fermat potentials in nonperturbative gravitational lensing, Phys. Rev. D, 65, 123006 (2002)
[125] Frittelli, S.; Newman, ET; Silva-Ortigoza, G., The eikonal equation in asymptotically flat space-times, J. Math. Phys., 40, 1041-1056 (1999) · Zbl 0946.83012
[126] Frittelli, S.; Newman, ET; Silva-Ortigoza, G., The eikonal equation in flat space: Null surfaces and their singularities. I, J. Math. Phys., 40, 383-407 (1999) · Zbl 1059.83508
[127] Frittelli, S.; Oberst, TE, Image distortion by thick lenses, Phys. Rev. D, 65, 023005 (2001)
[128] Frittelli, S.; Petters, AO, Wavefronts, caustic sheets, and caustic surfing in gravitational lensing, J. Math. Phys., 43, 5578-5611 (2002) · Zbl 1060.83510
[129] Ftaclas, C.; Kearney, MW; Pechenick, KR, Hot spots on neutron stars. II. The observer’s sky, Astrophys. J., 300, 203-208 (1986)
[130] Fukue, J.; Yokoyama, T., Color photographs of an accretion disk around a black hole, Publ. Astron. Soc. Japan, 40, 15-24 (1988)
[131] Gal’tsov, DV; Masár, E., Geodesics in spacetimes containing cosmic strings, Class. Quantum Grav., 6, 1313-1341 (1989) · Zbl 0677.53086
[132] Garfinkle, D., Traveling waves in strongly gravitating cosmic strings, Phys. Rev. D, 41, 1112-1115 (1990) · Zbl 0983.83500
[133] Geroch, R., Domain of dependence, J. Math. Phys., 11, 417-449 (1970) · Zbl 0189.27602
[134] Geroch, R.; Sachs, RK, Space-time structure from a global viewpoint, General Relativity and Cosmology: Proceedings of the 47th International School of Physics “Enrico Fermi”, Varena, Italy, 30th June-12 July 1969, 71-103 (1971), New York, U.S.A.: Academic Press, New York, U.S.A.
[135] Geroch, R.; Traschen, J., Strings and other distributional sources in general relativity, Phys. Rev. D, 36, 1017-1031 (1987)
[136] Giannoni, F.; Masiello, A., On a Fermat principle in general relativity. A Morse theory for light rays, Gen. Relativ. Gravit., 28, 855-897 (1996) · Zbl 0855.53039
[137] Giannoni, F.; Masiello, A.; Piccione, P., A variational theory for light rays in stably causal Lorentzian manifolds: Regularity and multiplicity results, Commun. Math. Phys., 187, 375-415 (1997) · Zbl 0884.53048
[138] Giannoni, F.; Masiello, A.; Piccione, P., A Morse theory for light rays on stably causal Lorentzian manifolds, Ann. Inst. Henri Poincare A, 69, 359-412 (1998) · Zbl 0920.58019
[139] Giannoni, F.; Masiello, A.; Piccione, P., Convexity and the finiteness of the number of geodesics. Applications to the multiple-image effect, Class. Quantum Grav., 16, 731-748 (2001) · Zbl 0941.53028
[140] Giannoni, F.; Masiello, A.; Piccione, P., On the finiteness of light rays between a source and an observer on conformally stationary space-times, Gen. Relativ. Gravit., 33, 491-514 (2001) · Zbl 0980.83016
[141] Gibbons, GW; Perry, MJ, Black holes and thermal Green functions, Proc. R. Soc. London, Ser. A, 358, 467-494 (1978)
[142] Godfrey, BB, Mach’s principle, the Kerr metric, and black-hole physics, Phys. Rev. D, 1, 2721-2725 (1970)
[143] Gordon, W., Zur Lichtfortpflanzung nach der Relativitatstheorie, Ann. Phys. (Berlin), 72, 421-456 (1923) · JFM 49.0653.07
[144] Gott, JR, Gravitational lensing effects of vacuum strings: Exact solutions, Astrophys. J., 288, 422-427 (1985)
[145] Gould, A., Femtolensing of gamma-ray bursters, Astrophys. J. Lett., 386, L5-L7 (1992)
[146] Hagihara, Y., Theory of the relativistic trajectories in a gravitational field of Schwarzschild, Jpn. J. Astron. Geophys., 8, 67-176 (1931) · JFM 57.1175.05
[147] Hanni, RS, Wave fronts near a black hole, Phys. Rev. D, 16, 933-936 (1977)
[148] Harris, S., Conformally stationary spacetimes, Class. Quantum Grav., 9, 1823-1827 (1992) · Zbl 0774.53027
[149] Hasse, W., The apparent size of distant objects, Gen. Relativ. Gravit., 19, 515-524 (1987) · Zbl 0614.53068
[150] Hasse, W.; Kriele, M.; Perlick, V., Caustics of wavefronts in general relativity, Class. Quantum Grav., 13, 1161-1182 (1996) · Zbl 0855.53040
[151] Hasse, W.; Perlick, V., Geometrical and kinematical characterization of parallax-free world models, J. Math. Phys., 29, 2064-2068 (1988) · Zbl 0655.53068
[152] Hasse, W.; Perlick, V., On spacetime models with an isotropic Hubble law, Class. Quantum Grav., 16, 2559-2576 (1999) · Zbl 0946.83069
[153] Hasse, W.; Perlick, V., Gravitational lensing in spherically symmetric static spacetimes with centrifugal force reversal, Gen. Relativ. Gravit., 34, 415-433 (2002) · Zbl 0996.83013
[154] Hawking, SW; Ellis, GFR, The large scale structure of space-time (1973), Cambridge, U.K.: Cambridge University Press, Cambridge, U.K.
[155] Helliwell, TM; Konkowski, DA, Cosmic strings: Gravitation without local curvature, Am. J. Phys., 55, 401-407 (1987)
[156] Herlt, E.; Stephani, H., Wave optics of the spherical gravitational lens. I. Diffraction of a plane electromagnetic wave by a large star, Int. J. Theor. Phys., 15, 45-65 (1976)
[157] Herlt, E.; Stephani, H., Wave optics of the spherical gravitational lens. II. Diffraction of a plane gravitational wave by a black hole, Int. J. Theor. Phys., 17, 189-199 (1978)
[158] Hilbert, D., “Die Grundlagen der Physik”, Nachr. Koenigl. Gesellsch. Wiss. Goettingen, Math.-Phys. Kl., 53-76, (1917). 5.1, 5.1 · JFM 46.1298.01
[159] Hiscock, WA, Exact gravitational field of a string, Phys. Rev. D, 31, 3288-3290 (1985)
[160] Hledik, S.; Hledík, S.; Stuchlík, Z., Embedding diagrams of the ordinary and optical reference geometry of blackhole spacetimes and their astrophysical relevance, Proceedings of RAGtime 2/3: Workshops on black holes and neutron stars, 25-52 (2001), Opava, Czech Republic: Silesian University at Opava, Opava, Czech Republic
[161] Holz, DE; Wald, RM, New method for determining cumulative gravitational lensing effects in inhomogeneous universes, Phys. Rev. D, 58, 063501 (1998)
[162] Holz, DE; Wheeler, JA, Retro-MACHOs: π in the sky?, Astrophys. J., 578, 330-334 (2002)
[163] Hubeny, V.E., and Rangamani, M., “Causal structures of pp-waves”, J. High Energy Phys.(12), 043, (2002). For a related online version see: V.E. Hubeny, et al., (November, 2002), [Online Los Alamos Archive Preprint]: cited on 30 October 2003, http://arXiv.org/abs/hep-th/0211195. 5.11 · Zbl 1086.83510
[164] Huterer, D.; Vachaspati, T., Gravitational lensing by cosmic strings in the era of wide-field surveys, Phys. Rev. D, 68, 041301 (2003)
[165] Iriondo, M.; Kozameh, CN; Rojas, AT, Null cones from \(\mathcal I\) and Legendre submanifolds, J. Math. Phys., 40, 2483-2493 (1999) · Zbl 0948.83008
[166] Iyer, BR; Vishveshwara, CV; Dhurandhar, SV, Ultracompact (R < 3M) objects in general relativity, Class. Quantum Grav., 2, 219-228 (1985)
[167] Jaffe, J., The escape of light from within a massive object, Mon. Not. R. Astron. Soc., 149, 395-401 (1970)
[168] Janis, AI; Newman, ET; Winicour, J., Reality of the Schwarzschild singularity, Phys. Rev. Lett., 20, 878-880 (1968)
[169] Jaroszynski, M.; Kurpiewski, A., Optics near Kerr black holes: spectra of advection dominated accretion flows, Astron. Astrophys., 326, 419-426 (1997)
[170] Jensen, B.; Soleng, H., General-relativistic model of a spinning cosmic string, Phys. Rev. D, 45, 3528-3533 (1992)
[171] Jin, KJ; Zhang, YZ; Zhu, ZH, Gravitational lensing effects of fermion-fermion stars: strong field case, Phys. Lett. A, 264, 335-340 (2000)
[172] Jordan, P., Ehlers, J., and Sachs, R.K., “Beiträge zur Theorie der reinen Gravitationsstrahlung”, Akad. Wiss. Lit. Mainz, Abh. Math. Nat. Kl., 1-61, (1961). 2.3, 2.4 · Zbl 0124.22205
[173] Kantowski, R., Another interpretation of the optical scalars, J. Math. Phys., 9, 336-338 (1968)
[174] Kantowski, R., The effects of inhomogeneities on evaluating the mass parameter Ψ_m and the cosmological constant Λ, Astrophys. J., 507, 483-496 (1998)
[175] Karas, V.; Bao, G., On the light curve of an orbiting SPOT, Astron. Astrophys., 257, 531-533 (1992)
[176] Karas, V.; Vokrouhlicky, D.; Polnarev, AG, In the vicinity of a rotating black hole — A fast numerical code for computing observational effects, Mon. Not. R. Astron. Soc., 257, 569-575 (1992)
[177] Karlovini, M.; Rosquist, K.; Samuelsson, L., Ultracompact stars with multiple necks, Mod. Phys. Lett. A, 17, 197-203 (2002) · Zbl 1083.85002
[178] Kaufman, SE, A complete redshift-magnitude formula, Astron. J., 76, 751-755 (1971)
[179] Kaup, DJ, Klein-Gordon geons, Phys. Rev., 172, 1331-1342 (1968)
[180] Kermack, WO; McCrea, WH; Whittaker, ET, Properties of null geodesics and their applications to the theory of radiation, Proc. R. Soc. Edinburgh, 53, 31-47 (1932)
[181] Kerr, RP, Gravitational field of a spinning mass as an example of algebraically special metrics, Phys. Rev. Lett., 11, 237-238 (1963) · Zbl 0112.21904
[182] Kim, SW; Cho, YM; Jantzen, RT; Mac Keiser, G., Gravitational lensing effect of a wormhole, The Seventh Marcel Grossman Meeting on Recent Developments in Theoretical and Experimental General Relativity, Gravitation, and Relativistic Field Theories: Proceedings of the Meeting held at Stanford University, 24-30 July 1994, 1147-1148 (1996), Singapore: World Scientific, Singapore
[183] Kling, TP; Newman, ET, Null cones in Schwarzschild geometry, Phys. Rev. D, 59, 124002 (1999)
[184] Kling, TP; Newman, ET; Perez, A., Comparative studies of lensing methods, Phys. Rev. D, 62, 024025 (2000)
[185] Kopeikin, SM; Schäfer, G., Lorentz covariant theory of light propagation in gravitational fields of arbitrary-moving bodies, Phys. Rev. D, 60, 124002 (1999)
[186] Kottler, F., Über die physikalischen Grundlagen der Einsteinschen Gravitationstheorie, Ann. Phys. (Berlin), 56, 401-461 (1918) · JFM 46.1306.01
[187] Kovner, I., Fermat principle in gravitational fields, Astrophys. J., 351, 114-120 (1990)
[188] Kozameh, CN; Lamberti, P.; Reula, O., Global aspects of light cone cuts, J. Math. Phys., 32, 3423-3426 (1991)
[189] Kozameh, CN; Newman, ET, Theory of light cone cuts of null infinity, J. Math. Phys., 24, 2481-2489 (1983) · Zbl 0529.53047
[190] Kristian, J.; Sachs, RK, Observations in cosmology, Astrophys. J., 143, 379-399 (1966)
[191] Kristiansson, S.; Sonego, S.; Abramowicz, MA, Optical space of the Reissner-Nordström solutions, Gen. Relativ. Gravit., 30, 275-288 (1998) · Zbl 0909.53057
[192] Krori, KD; Goswami, D.; Das, K., A stationary solution for cosmic strings, Class. Quantum Grav., 10, 125-129 (1993)
[193] Kunzinger, M.; Steinbauer, R., A rigorous solution concept for geodesic and geodesic deviation equations in impulsive gravitational waves, J. Math. Phys., 40, 1479-1489 (1999) · Zbl 0947.83020
[194] Lake, K., Bending of light and the cosmological constant, Phys. Rev. D, 65, 087301 (2002)
[195] Lake, K.; Roeder, RC, Effects of a nonvanishing cosmological constant on the spherically symmetric vacuum manifold, Phys. Rev. D, 15, 3513-3519 (1977)
[196] Lake, K.; Roeder, RC, On the optical appearance of white holes, Astrophys. J., 226, 37-49 (1978)
[197] Lake, K.; Roeder, RC, The present appearance of white holes, Nature, 273, 449-450 (1978)
[198] Lake, K.; Roeder, RC, Note on the optical appearance of a star collapsing through its gravitational radius, Astrophys. J., 232, 277-281 (1979)
[199] Lakshminarayanan, V.; Ghatak, AK; Thyagarajan, K., Lagrangian Optics (2001), Boston, U.S.A.: Kluwer, Boston, U.S.A.
[200] Landau, LD; Lifshitz, EM, The classical theory of fields (1962), Oxford, U.K.; Reading, U.K.: Pergamon Press; Addison-Wesley, Oxford, U.K.; Reading, U.K.
[201] Lano, RP, The brightness of a black hole due to gravitational lensing, Astrophys. Space Sci., 159, 125-132 (1989)
[202] Laue, H.; Weiss, M., Maximally extended Reissner-Nordström manifold with cosmological constant, Phys. Rev. D, 16, 3376-3379 (1977)
[203] Lawrence, JK, Gravitational deflection of null radiation by relativistic, spherical masses, Astrophys. J., 230, 249-254 (1979)
[204] Lerner, L., A simple calculation of the deflection of light in a Schwarzschild gravitational field, Am. J. Phys., 65, 1194-1196 (1997) · Zbl 1219.83047
[205] Letelier, PS, Multiple cosmic strings, Class. Quantum Grav., 4, L75-L77 (1987)
[206] Levi-Civita, T., La teoria di Einstein e il principio di Fermat, Nuovo Cimento, 16, 105-114 (1918) · JFM 46.1328.01
[207] Linet, B., The static metrics with cylindrical symmetry describing a model of cosmic strings, Gen. Relativ. Gravit., 17, 1109-1115 (1985)
[208] Low, R., The geometry of the space of null geodesics, J. Math. Phys., 30, 809-811 (1989) · Zbl 0677.53070
[209] Low, R., Celestial spheres, light cones, and cuts, J. Math. Phys., 34, 315-319 (1993) · Zbl 0782.53060
[210] Low, R., Stable singularities of wave-fronts in general relativity, J. Math. Phys., 39, 3332-3335 (1998) · Zbl 1001.83006
[211] Luminet, J-P, Image of a spherical black hole with thin accretion disk, Astron. Astrophys., 75, 228-235 (1979)
[212] Luneburg, RK, Mathematical Theory of Optics (1964), Berkeley, U.S.A.: University of California Press, Berkeley, U.S.A.
[213] Marder, L., Flat space-times with gravitational fields, Proc. R. Soc. London, Ser. A, 252, 45-50 (1959) · Zbl 0087.23004
[214] Marder, L., Locally isometric spacetimes, Recent Developments in General Relativity, 333-338 (1962), Oxford, U.K.; New York, U.S.A.: Pergamon Press, Oxford, U.K.; New York, U.S.A.
[215] Margerin, C.; Greene, R.; Yau, ST, General conjugate loci are not closed, Differential Geometry. Pt. 3: Riemannian Geometry, 465-478 (1993), Providence, U.S.A.: American Mathematical Society, Providence, U.S.A. · Zbl 0811.53043
[216] Markov, M., On possible existence of neutrino superstars, Phys. Lett., 10, 122-123 (1964)
[217] Mashhoon, B., Wave propagation in a gravitational field, Phys. Lett. A, 122, 299-304 (1987)
[218] Masiello, A., Variational methods in Lorentzian geometry (1994), Harlow, U.K.; New York, U.S.A.: Longman; Wiley, Harlow, U.K.; New York, U.S.A. · Zbl 0816.58001
[219] Mattig, W., Über den Zusammenhang zwischen Rotverschiebung und scheinbarer Helligkeit, Astron. Nachr., 284, 109-111 (1957)
[220] McKenzie, RH, A gravitational lens produces an odd number of images, J. Math. Phys., 26, 1592-1596 (1985) · Zbl 0569.53043
[221] Mészáros, P.; Riffert, H., Gravitational light bending near neutron stars. II. Accreting pulsar spectra as a function of phase, Astrophys. J., 327, 712-722 (1988)
[222] Metzenthen, WE, Appearance of distant objects to an observer in a charged-black-hole spacetime, Phys. Rev. D, 42, 1105-1117 (1990)
[223] Metzner, AWK, Observable properties of large relativistic masses, J. Math. Phys., 4, 1194-1205 (1963) · Zbl 0118.23001
[224] Milnor, J., Morse Theory: Based on Lecture Notes by M. Spivak and R. Wells (1963), Princeton, U.S.A.: Princeton University Press, Princeton, U.S.A.
[225] Misner, CW; Thorne, KS; Wheeler, JA, Gravitation (1973), New York, U.S.A.: Freeman, New York, U.S.A.
[226] Mollerach, S.; Roulet, E., Gravitational Lensing and Microlensing (2002), New Jersey, U.S.A.: World Scientific, New Jersey, U.S.A.
[227] Morris, MS; Thorne, KS, Wormholes in spacetime and their use for interstellar travel, Am. J. Phys., 56, 395-412 (1988) · Zbl 0957.83529
[228] Morris, MS; Thorne, KS; Yurtsever, U., Wormholes, time machines, and the weak energy condition, Phys. Rev. Lett., 61, 1446-1449 (1988)
[229] Morse, M., The Calculus of Variations in the Large (1934), Providence, U.S.A.: American Mathematical Society, Providence, U.S.A. · JFM 60.0450.01
[230] Mustapha, N.; Bassett, BACC; Hellaby, C.; Ellis, GFR, The distortion of the area distance-redshift relation in inhomogeneous isotropic universes, Class. Quantum Grav., 15, 2363-2379 (1998) · Zbl 0964.83035
[231] Nandi, KK; Islam, A., On the optical-mechanical analogy in general relativity, Am. J. Phys., 63, 251-256 (1995)
[232] Narlikar, JV; Apparao, KMV, White holes and high energy astrophysics, Astrophys. Space Sci., 35, 321-336 (1975)
[233] Nemiroff, RJ, Visual distortions near a neutron star and black hole, Am. J. Phys., 61, 619-632 (1993)
[234] Nemiroff, RJ; Ftaclas, C., Our Sun as a gravitational lens, Bull. Am. Astron. Soc., 29, 827 (1997)
[235] Neugebauer, G.; Kleinwachter, A.; Meinel, R., Relativistically rotating dust, Helv. Phys. Acta, 69, 472 (1996) · Zbl 0878.35114
[236] Neugebauer, G.; Meinel, R., The Einsteinian gravitational field of the rigidly rotating disk of dust, Astrophys. J. Lett., 414, L97-L99 (1993) · Zbl 0797.35157
[237] Newman, RPC, The global structure of simple spacetimes, Commun. Math. Phys., 123, 17-52 (1989)
[238] Newman, RPC; Clarke, CJS, An ℝ^4 spacetime with a Cauchy surface which is not ℝ^3, Class. Quantum Grav., 4, 53-60 (1987) · Zbl 0612.53040
[239] Nollert, H-P; Ruder, H.; Herold, H.; Kraus, U., The relativistic ‘looks’ of a neutron star, Astron. Astrophys., 208, 153-156 (1989)
[240] Noonan, T., Image distortion by gravitational lensing, Astrophys. J., 270, 245-249 (1983)
[241] Nordström, G., On the energy of the gravitational field in Einstein’s theory, Proc. K. Ned. Akad. Wetensch., 20, 1238-1245 (1918)
[242] Novello, M.; Visser, M.; Volovik, G., Artificial Black Holes (2002), New Jersey, U.S.A.: World Scientific, New Jersey, U.S.A.
[243] Nucamendi, U.; Sudarsky, D., Quasi-asymptotically flat spacetimes and their ADM mass, Class. Quantum Grav., 14, 1309-1327 (1997) · Zbl 0873.53060
[244] Observational Astrophysics Group, University of Liege, “Lentilles gravitationelles — Gravitational Lensing”, (2003), [Web interface to database]: cited on 30 October 2003, http://vela.astro.ulg.ac.be/themes/extragal/gravlens. 1
[245] Ohanian, H., The caustics of gravitational ‘lenses’, Astrophys. J., 271, 551-555 (1983)
[246] Ohanian, H., The black hole as a gravitational lens, Am. J. Phys., 55, 428-432 (1987)
[247] O’Neill, B., Semi-Riemannian Geometry: With Applications to Relativity (1983), New York, U.S.A.: Academic Press, New York, U.S.A.
[248] O’Neill, B., The Geometry of Kerr Black Holes (1995), Wellesley, U.S.A.: A.K. Peters, Wellesley, U.S.A. · Zbl 0828.53078
[249] Oppenheimer, JR; Snyder, H., On continued gravitational contraction, Phys. Rev., 56, 455-459 (1939) · Zbl 0022.28104
[250] Padmanabhan, T.; Subramanian, K., The focusing equation, caustics and the condition of multiple imaging by thick gravitational lenses, Mon. Not. R. Astron. Soc., 233, 265-284 (1988)
[251] Palais, R., Morse theory on Hilbert manifolds, Topology, 2, 299-340 (1963) · Zbl 0122.10702
[252] Palais, R.; Smale, S., A generalized Morse theory, Bull. Am. Math. Soc., 70, 165-172 (1964) · Zbl 0119.09201
[253] Pande, AK; Durgapal, MC, Trapping of photons in spherical static configurations, Class. Quantum Grav., 3, 547-550 (1986)
[254] Panov, VF; Sbytov, YuG, Accounting for Birch’s observed anisotropy of the universe: cosmological rotation?, Sov. Phys. JETP, 74, 411-415 (1992)
[255] Panov, VF; Sbytov, YuG, Behavior of a bundle of rays forming the image of a source in cosmological models with rotation, Sov. Phys. JETP, 87, 417-420 (1998)
[256] Pechenick, KR; Ftaclas, C.; Cohen, JM, Hot spots on neutron stars — The near-field gravitational lens, Astrophys. J., 274, 846-857 (1983)
[257] Penrose, R., The apparent shape of a relativistically moving sphere, Proc. Cambridge Philos. Soc., 55, 137-139 (1959)
[258] Penrose, R.; DeWitt, CM; DeWitt, B., Conformal treatment of infinity, Relativity, Groups and Topology. Relativite, Groupes et Topologie: Lectures delivered at Les Houches during the 1963 session of the Summer School of Theoretical Physics, University of Grenoble, 565-587 (1964), New York, U.S.A.: Gordon and Breach, New York, U.S.A.
[259] Penrose, R., A remarkable property of plane waves in general relativity, Rev. Mod. Phys., 37, 215-220 (1965) · Zbl 0125.21101
[260] Penrose, R.; Hoffmann, B., General-relativistic energy flux and elementary optics, Perspectives in Geometry and Relativity: Essays in honor of Vaclav Hlavatý, 259-274 (1966), Bloomington, U.S.A.: Indiana University Press, Bloomington, U.S.A.
[261] Penrose, R., Techniques of Differential Topology in Relativity (1972), Philadelphia, U.S.A.: Society for Industrial and Applied Mathematics, Philadelphia, U.S.A. · Zbl 0321.53001
[262] Penrose, R.; Rindler, W., Spinors and space-time. Vols. 1 and 2 (1986), Cambridge, U.K.: Cambridge University Press, Cambridge, U.K.
[263] Perelman, G., “Ricci flow with surgery on three-manifolds”, (March, 2003), [Online Los Alamos Archive Preprint]: cited on 30 October 2003, http://arXiv.org/abs/math.DG/0303109. 3.4 · Zbl 1130.53002
[264] Perlick, V., On Fermat’s principle in general relativity. I. The general case, Class. Quantum Grav., 7, 1319-1331 (1990) · Zbl 0707.53054
[265] Perlick, V., On Fermat’s principle in general relativity. II. The conformally stationary case, Class. Quantum Grav., 7, 1849-1867 (1990) · Zbl 0707.53055
[266] Perlick, V., Infinite dimensional Morse theory and Fermat’s principle in general relativity. I, J. Math. Phys., 36, 6915-6928 (1995) · Zbl 0854.58014
[267] Perlick, V., Criteria for multiple imaging in Lorentzian manifolds, Class. Quantum Grav., 13, 529-537 (1996) · Zbl 0852.53048
[268] Perlick, V.; Schmidt, B., Gravitational lensing from a geometric viewpoint, Einstein’s Field Equations and their Physical Implications: Selected Essays in Honour of Jurgen Ehlers, 373-425 (2000), Berlin, Germany: Springer, Berlin, Germany · Zbl 1004.83038
[269] Perlick, V., Ray Optics, Fermat’s Principle, and Applications to General Relativity (2000), Berlin, Germany; New York, U.S.A.: Springer, Berlin, Germany; New York, U.S.A. · Zbl 0964.83002
[270] Perlick, V., Global properties of gravitational lens maps in a Lorentzian manifold setting, Commun. Math. Phys., 220, 403-428 (2001) · Zbl 0995.58008
[271] Perlick, V., On the exact gravitational lens equation in spherically symmetric and static spacetimes, Phys. Rev. D, 69, 064017 (2004)
[272] Perlick, V.; Piccione, P., A general-relativistic Fermat principle for extended light sources and extended receivers, Gen. Relativ. Gravit., 30, 1461-1476 (1998) · Zbl 0938.58014
[273] Peters, PC, Null geodesic deviation. I. Conformally flat space-times, J. Math. Phys., 16, 1780-1785 (1976)
[274] Petters, AO, On relativistic corrections to microlensing effects: applications to the Galactic black hole, Mon. Not. R. Astron. Soc., 338, 457-464 (2003)
[275] Petters, AO; Levine, H.; Wambsganss, J., Singularity Theory and Gravitational Lensing (2001), Boston, U.S.A.: Birkhauser, Boston, U.S.A. · Zbl 0979.83001
[276] Pineault, S.; Roeder, RC, Applications of geometrical optics to the Kerr metric. Analytical results, Astrophys. J., 212, 541-549 (1977)
[277] Pineault, S.; Roeder, RC, Applications of geometrical optics to the Kerr metric. II. Numerical results, Astrophys. J., 213, 548-557 (1977)
[278] Podolsky, J., The structure of the extreme Schwarzschild-de Sitter space-time, Gen. Relativ. Gravit., 31, 1703-1725 (1999) · Zbl 0945.83007
[279] Podurets, MA, Asymptotic behavior of the optical luminosity of a star in gravitational collapse, Sov. Astron., 8, 868-873 (1965)
[280] Poincaré, H., Sur les lignes géodésiques des surfaces convexes, Trans. Amer. Math. Soc., 6, 237-274 (1905) · JFM 36.0669.01
[281] Polnarev, AG; Turchaninov, VI, On light propagation near a rotating black hole. I, Acta Astron., 29, 81-85 (1979)
[282] Pretorius, F.; Israel, W., Quasi-spherical light cones of the Kerr geometry, Class. Quantum Grav., 15, 2289-2301 (1998) · Zbl 0969.83009
[283] Pyne, T.; Birkinshaw, M., Beyond the thin lens approximation, Astrophys. J., 458, 46-56 (1996)
[284] Quan, PM, Inductions électromagnétiques en rélativité général et principe de Fermat, Arch. Ration. Mech. Anal., 1, 54-80 (1957) · Zbl 0092.20904
[285] Rauch, KP; Blandford, RD, Optical caustics in a Kerr spacetime and the origin of rapid X-ray variability in active galactic nuclei, Astrophys. J., 421, 46-68 (1994)
[286] Reissner, H., Über die Eigengravitation des elektrischen Feldes nach der Einsteinschen Theorie, Ann. Phys. (Berlin), 59, 106-120 (1916)
[287] Riffert, H.; Mészáros, P., Gravitational light bending near neutron stars. I. Emission from columns and hot spots, Astrophys. J., 325, 207-217 (1988)
[288] Rosquist, K., “A moving medium simulation of Schwarzschild black hole optics”, (September, 2003), [Online Los Alamos Archive Preprint]: cited on 30 October 2003, http://arXiv.org/abs/gr-qc/0309104. 5.1 · Zbl 1059.83024
[289] Rosquist, K., Trigonometric parallaxes of distant objects: What they could tell about the universe, Astrophys. J., 331, 648-652 (1988)
[290] Rubio, E.A.L., “Time delay in gravitational lensing by a charged black hole of string theory”, (September, 2003), [Online Los Alamos Archive Preprint]: cited on 30 October 2003, http://arXiv.org/abs/gr-qc/0309108. 5.3
[291] Ruffini, R.; Bonazzola, S., Systems of self-gravitating particles in general relativity and the concept of an equation of state, Phys. Rev., 187, 1767-1783 (1969)
[292] Sachs, RK, Gravitational waves in general relativity. VI: The outgoing radiation condition, Proc. R. Soc. London, Ser. A, 264, 309-338 (1961) · Zbl 0098.19204
[293] Safonova, M.; Torres, DF; Romero, GE, Microlensing by natural wormholes: theory and simulations, Phys. Rev. D, 65, 023001 (2002)
[294] Sasaki, M., Cosmological gravitational lens equation — Its validity and limitation, Prog. Theor. Phys., 90, 753-781 (1993)
[295] Sazhin, M.; Longo, G.; Capaccioli, M.; Alcala, JM; Silvotti, R.; Covone, G.; Khovanskaya, O.; Pavlov, M.; Pannella, M.; Radovich, M.; Testa, V., CSL-1: chance projection effect or serendipitous discovery of a gravitational lens induced by a cosmic string?, Mon. Not. R. Astron. Soc., 343, 353-359 (2003)
[296] Schastok, J.; Soffel, M.; Ruder, H.; Schneider, M., Stellar sky as seen from the vicinity of a black hole, Am. J. Phys., 55, 336-341 (1987)
[297] Schneider, P., A new formulation of gravitational lens theory, time-delay, and Fermat’s principle, Astron. Astrophys., 143, 413-420 (1985)
[298] Schneider, P., and Bartelmann, M., “Gravitational Lensing Bibliography”, (1999), [Online HTML document]: cited on 28 October 2003, http://www.mpa-garching.mpg.de/∼peter/biblio.html. 1 · Zbl 0971.83518
[299] Schneider, P.; Ehlers, J.; Falco, EE, Gravitational Lenses (1992), Berlin, Germany; New York, U.S.A.: Springer, Berlin, Germany; New York, U.S.A.
[300] Schrödinger, E., Expanding Universes (1956), Cambridge, U.K.: Cambridge University Press, Cambridge, U.K. · Zbl 0075.21603
[301] Schunck, FE; Liddle, AR; Hehl, FW; Kiefer, C.; Metzler, RJK, Boson stars in the centre of galaxies?, Black Holes: Theory and Observation. Proceedings of the 179th W.E. Heraeus Seminar, held at Bad Honnef, Germany, 18-22 August 1997, 285 (1997), Berlin, Germany: Springer, Berlin, Germany
[302] Schwarzschild, K., “Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie”, Sitzungsber. Preuss. Akad. Wiss., Phys.-Math. Kl., 189-196, (1916). 5.1 · JFM 46.1296.02
[303] Seitz, S.; Schneider, P.; Ehlers, J., Light propagation in arbitrary spacetimes and the gravitational lens approximation, Class. Quantum Grav., 11, 2345-2373 (1994) · Zbl 0810.53079
[304] Serre, JP, Homologie singuliere des espaces fibres. Applications, Ann. Math., 54, 425-505 (1951) · Zbl 0045.26003
[305] Shapiro, SL, Radiation from stellar collapse to a black hole, Astrophys. J., 472, 308-326 (1996)
[306] Sharp, NA, Geodesics in black hole space-times, Gen. Relativ. Gravit., 10, 659-670 (1979) · Zbl 0433.53052
[307] Sikora, M., On light propagation near a rotating black hole. II, Acta Astron., 29, 87-92 (1979)
[308] Sokolov, DD; Starobinsky, AA, The structure of the curvature tensor at conical singularities, Sov. Phys. Dokl., 22, 312-313 (1977)
[309] Stachel, J., Globally stationary but locally static spacetimes: A gravitational analog of the Aharonov-Bohm effect, Phys. Rev. D, 26, 1281-1290 (1982)
[310] Steinbauer, R., Geodesics and geodesic deviation for impulsive gravitational waves, J. Math. Phys., 39, 2201-2212 (1998) · Zbl 0985.83009
[311] Stephani, H.; Kramer, D.; MacCallum, M.; Hoenselaers, C.; Herlt, E., Exact Solutions of Einstein’s Field Equation (2003), Cambridge, U.K., New York, U.S.A.: Cambridge University Press, Cambridge, U.K., New York, U.S.A. · Zbl 1057.83004
[312] Straumann, N., General Relativity and Relativistic Astrophysics (1984), Berlin, Germany; New York, U.S.A.: Springer, Berlin, Germany; New York, U.S.A.
[313] Stuchlik, Z.; Hledik, S., Embedding diagrams of the optical geometry of Kerr backgrounds, Acta Phys. Slov., 49, 795-803 (1999) · Zbl 0934.83008
[314] Stuchlik, Z.; Hledik, S., Some properties of the Schwarzschild-de Sitter and Schwarzschild-anti-de Sitter spacetimes, Phys. Rev. D, 60, 044006 (1999)
[315] Stuchlik, Z.; Hledik, S.; Soltes, J.; Ostgaard, E., Null geodesics and embedding diagrams of the interior Schwarzschild-de Sitter spacetimes with uniform density, Phys. Rev. D, 64, 044004 (2002)
[316] Stuckey, WM, The Schwarzschild black hole as a gravitational mirror, Am. J. Phys., 61, 448-456 (1993)
[317] Su, FS; Mallet, RL, The effect of the Kerr metric on the plane of polarization of an electromagnetic wave, Astrophys. J., 238, 1111-1125 (1980)
[318] Surpi, GC; Harari, DD, Weak lensing by large-scale structure and the polarization properties of distant radio sources, Astrophys. J., 515, 455-464 (1999)
[319] Synge, JL, An alternative treatment of Fermat’s principle for a stationary gravitational field, Philos. Mag. and J. of Science, 50, 913-916 (1925) · JFM 51.0713.02
[320] Synge, JL, The escape of photons from gravitationally intense stars, Mon. Not. R. Astron. Soc., 131, 463-466 (1966)
[321] Terrell, J., Invisibility of the Lorentz contraction, Phys. Rev., 116, 1041-1045 (1959)
[322] Thomas, RC; Kantowski, R., Age-redshift relation for standard cosmology, Phys. Rev. D, 62, 103507 (2000)
[323] Tolman, RC, On the estimate of distance in a curved universe with a non-static line element, Proc. Natl. Acad. Sci. USA, 16, 511-520 (1930) · JFM 56.1365.05
[324] Torres, DF; Capozziello, S.; Liambase, G., Supermassive boson star at the galactic center?, Phys. Rev. D, 62, 104012 (2000)
[325] Tsiklauri, D.; Viollier, RD, Dark matter concentration in the galactic center, Astrophys. J., 500, 591-595 (1998)
[326] Turyshev, SG; Andersson, BG, The 550-au mission: a critical discussion, Mon. Not. R. Astron. Soc., 341, 577-582 (2003)
[327] Uhlenbeck, K., A Morse theory for geodesics on a Lorentz manifold, Topology, 14, 69-90 (1975) · Zbl 0323.58010
[328] Ulmer, A.; Goodman, J., Femtolensing: Beyond the semiclassical approximation, Astrophys. J., 442, 67-75 (1995)
[329] Vazquez, S.E., and Esteban, E.P., “Strong field gravitational lensing by a Kerr black hole”, (August, 2003), [Online Los Alamos Archive Preprint]: cited on 30 October 2003, http://arXiv.org/abs/gr-qc/0308023. 5.8
[330] Viergutz, SU, Image generation in Kerr geometry. I. Analytical investigations on the stationary emitter-observer problem, Astron. Astrophys., 272, 355 (1993)
[331] Viergutz, SU, Radiation from arbitrarily shaped objects in the vicinity of Kerr black holes, Astrophys. Space Sci., 205, 155-161 (1993)
[332] Vilenkin, A., Gravitational fields of vacuum domain walls and strings, Phys. Rev. D, 23, 852-857 (1981)
[333] Vilenkin, A., Cosmic strings as gravitational lenses, Astrophys. J. Lett., 282, L51-L53 (1984) · Zbl 0966.83536
[334] Vilenkin, A.; Shellard, EPS, Cosmic Strings and Other Topological Defects, Cambridge Monographs on Mathematical Physics (1994), Cambridge, U.K.: Cambridge University Press, Cambridge, U.K. · Zbl 0978.83052
[335] Viollier, RD; Trautmann, D.; Tupper, GB, Supermassive neutrino stars and galactic nuclei, Phys. Lett. B, 306, 79-85 (1993)
[336] Virbhadra, KS, Janis-Newman-Winicour and Wyman solutions are the same, Int. J. Mod. Phys. A, 12, 4831-4836 (1997) · Zbl 0902.53061
[337] Virbhadra, KS; Ellis, GFR, Schwarzschild black hole lensing, Phys. Rev. D, 62, 084003 (2000)
[338] Virbhadra, KS; Ellis, GFR, Gravitational lensing by naked singularities, Phys. Rev. D, 65, 103004 (2002)
[339] Virbhadra, KS; Narasimha, D.; Chitre, SM, Role of the scalar field in gravitational lensing, Astron. Astrophys., 337, 1-8 (1998)
[340] Vollick, DN; Unruh, WG, Gravitational lensing properties of curved cosmic strings, Phys. Rev. D, 44, 2388-2396 (1991)
[341] Wald, R., General Relativity (1984), Chicago, U.S.A.: University of Chicago Press, Chicago, U.S.A.
[342] Walker, AG, Distance in an expanding universe, Mon. Not. R. Astron. Soc., 94, 159-167 (1934) · JFM 60.1485.04
[343] Wambsganss, J., “Gravitational lensing in astronomy”, Living Rev. Relativity, 1, lrr-1998-12, (1998), [Online article]: cited on 30 October 2003, http://www.livingreviews.org/lrr-1998-12. 1, 2.1, 2.5 · Zbl 1016.85500
[344] Weinberg, S., Apparent luminosities in a locally inhomogeneous universe, Astrophys. J. Lett., 208, L1-L3 (1976)
[345] Weiskopf, D.; Ansorg, M., Visualization of the general relativistic rigidly rotating disk of dust, Ann. Phys. (Leipzig), 9, SI-179-185 (2000)
[346] Weisstein, E., “Poincaré conjecture proved — this time for real”, (April, 2003), [Online Article]: cited on 30 October 2003, http://mathworld.wolfram.com/news/2003-04-15/poincare/. 3.4
[347] Weyl, H., Zur Gravitationstheorie, Ann. Phys. (Berlin), 54, 117-145 (1917) · JFM 46.1303.01
[348] Weyl, H., Über die statischen kugelsymmetrischen Lösungen von Einsteins “kosmologischen” Gravitationsgleichungen, Phys. Z., 20, 31-34 (1919) · JFM 47.0782.03
[349] Weyl, H., Raum, Zeit, Materie (1923), Berlin, Germany: Springer, Berlin, Germany
[350] Whitehead, JCH, On the covering of a complete space by the geodesics through a point, Ann. Math., 136, 679-704 (1935) · JFM 61.0788.01
[351] Whittaker, ET, On the definition of distance in curved space and the displacement of the spectral lines of distant sources, Proc. R. Soc. London, Ser. A, 133, 93-105 (1931) · Zbl 0002.36702
[352] Winterberg, F.; Phillips, WG, Gravitational self-lens effect, Phys. Rev. D, 8, 3329-3337 (1973)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.