×

zbMATH — the first resource for mathematics

A review of \(E\) infinity theory and the mass spectrum of high energy particle physics. (English) Zbl 1071.81501
Summary: The essay outlines the basic conceptual framework of a new space-time theory with application to high energy particle physics. Both achievements and limitations are discussed with direct reference to the mass spectrum problem.

MSC:
81P05 General and philosophical questions in quantum theory
81V99 Applications of quantum theory to specific physical systems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] El Naschie, M.S., Superstrings, knots and non-commutative geometry in E-infinity space, Int. J. theoret. phys., 37, 12, (1998) · Zbl 0935.58005
[2] El Naschie, M.S., The VAK of vacuum fluctuation, spontaneous self-organisation and complexity theory interpretation of high energy particle physics and the mass spectrum, Chaos, solitons & fractals, (2003) · Zbl 1056.81045
[3] Ord, G.N.; Mann, R.B., Entwined paths, difference equations and the Dirac equation, Phys. rev. A, 67, 0121XX3, (2003)
[4] Datta, D.P., The Golden Mean, scale free extension of real number systems, fuzzy sets and l/f spectrum in physics and biology, Chaos, solitons & fractals, 17, 781-788, (2003) · Zbl 1032.26502
[5] Marek Crnjac, L., On mass spectrum of elementary particles of the standard model using el naschie’s Golden field theory, Chaos, solitons & fractals, 15, 611-618, (2003) · Zbl 1033.81521
[6] Goldfain, E., Derivation of the fine structure constant using fractional dynamics, Chaos, solitons & fractals, 17, 811-818, (2003) · Zbl 1034.81509
[7] Nottale, L., Scale relativity and non-differentiable fractal space – time, (), 65-79
[8] El Naschie, M.S., Nonlinear dynamics and infinite dimensional topology in high energy physics, Chaos, solitons & fractals, 17, 591-599, (2003) · Zbl 1033.37501
[9] El Naschie, M.S., Complex vacuum fluctuation as a chaotic limit set of any Kleinian group transformation and the mass spectrum of high energy particle physics via spontaneous self-organisation, Chaos, solitons & fractals, 17, 631-638, (2003) · Zbl 1034.81514
[10] Polchinski, J., String theory, vol. I and II, (1998), Cambridge University Press Cambridge, MA
[11] Kechris, A.S., Classical descriptive set theory, (1995), Springer New York · Zbl 0819.04002
[12] Mumford, D.; Sevies, C.; Wright, D., Indra’s pearls, (2002), Cambridge New York
[13] El Naschie, M.S., VAK, vacuum fluctuation and the mass spectrum of high energy particle physics, Chaos, solitons & fractals, 17, 797-807, (2003) · Zbl 1034.81515
[14] El Naschie, M.S., On a class of general theories for high energy particle physics, Chaos, solitons & fractals, 14, 649-668, (2002)
[15] ‘t Hooft, G., In search of the ultimate building blocks, (1997), Cambridge New York · Zbl 1344.81006
[16] El Naschie, M.S., Modular groups in Cantorian E infinity high energy physics, Chaos, solitons & fractals, 16, 353-366, (2003) · Zbl 1035.83503
[17] El Naschie, M.S., Kleinian groups in E infinity and their connection to particle physics and cosmology, Chaos, solitons & fractals, 16, 637-649, (2003) · Zbl 1035.83509
[18] El Naschie, M.S., On the exact mass spectrum of quarks, Chaos, solitons & fractals, 14, 369-376, (2002)
[19] El Naschie, M.S., On conjugate complex time and information in relativistic quantum theory, Chaos, solitons & fractals, 5, 8, 1551-1555, (1995) · Zbl 0899.53052
[20] El Naschie, M.S., Theoretical derivation and experimental confirmation of the topology of transfinite heterotic strings, Chaos, solitons & fractals, 12, 1167-1174, (2001) · Zbl 1022.81678
[21] Weinberg, S., A unified physics by 2050, Sci. am., December, 36-43, (1999)
[22] Koschmieder EL. The standing wave model of the mesons and baryons. Chaos, Solitons & Fractals, in press · Zbl 1059.81183
[23] Sidharth, B.G., The nature of quantum space – time and the Cantorian proposal, Chaos, solitons & fractals, December, 1325, (2002) · Zbl 1037.81549
[24] Castro, C., Fractal strings as an alternative justification for el naschie’s Cantorian space – time and the fine structure constant, Chaos, solitons & fractals, December, 1341, (2002) · Zbl 1033.81511
[25] Castro, C., On p-adic stochastic dynamics, super symmetry and the Riemann conjecture, Chaos, solitons & fractals, January, 15, (2003) · Zbl 1056.81074
[26] Saniga, M., A further note on a formal relationship between the arithmetic of homoloidal nets and the dimensions of transfinite space – time, Chaos, solitons & fractals, 1571-1573, (2002)
[27] Gottlieb, I.; Ciobann, G.; Buzea, C.Ch., El naschie’s Cantorian space – time, Toda lattices and cooper – agop pairs, Chaos, solitons & fractals, August, 789, (2003) · Zbl 1034.81516
[28] Zmeskal, O.; Nezadal, M.; Buchnicek, M., Fractal Cantorian geometry Hausdorff dimension and the fundamental laws of physics, Chaos, solitons & fractals, July, 113, (2003) · Zbl 1036.28013
[29] Agop, M.; Strat, M.; Strat, G.; Nica, T.P., Cantorian ε(∞) structures in discharge plasma double layers. theoretical and experimental aspects of basic processes, Chaos, solitons & fractals, June, 1541, (2002)
[30] El Naschie MS. The mass of the neutrinos via the energy of the cosmic background radiation of the VAK. Chaos, Solitons & Fractals, in press · Zbl 1075.83534
[31] Abel, S.; March-Russell, J., The search for extra dimensions, Physics world, November, 39, (2000)
[32] Sidharth, B.G., Chaotic universe, (2001), Nova New York · Zbl 1016.83042
[33] El Naschie, M.S., The fractal dimension of space – time–remarks on theoretical derivation and experimental verification, Chaos, solitons & fractals, 9, 7, 1211-1217, (1988) · Zbl 1047.81530
[34] Kröger, H., Generalized aharonor – bohm effect, homotopy classes and Hausdorff dimension, Phys. lett. A, 226, 127-134, (1997) · Zbl 0962.81517
[35] El Naschie, M.S., A note on quantum mechanics, diffusional interference and informions, Chaos, solitons & fractals, 5, 5, 881-884, (1995) · Zbl 0900.81007
[36] El Naschie, M.S., Determining the temperature of the microwave background radiation from the topology and geometry of space – time, Chaos, solitons & fractals, 14, 1121-1126, (2002) · Zbl 1034.83503
[37] Strogatz S. Sync. Penguin Books, London, 2003
[38] Noyes, H.P.; Bastin, T.; Amson, J.; Kilmister, C., On the physical interpretation and the mathematical structure of combinatorial hierarchy, Int. J. theoret. phys., 13, 7, 445-488, (1979)
[39] Sternglass, E.J., Before the big bang, (1997), Four Walls Eight Windows New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.