×

zbMATH — the first resource for mathematics

Some discrete competition models and the competitive exclusion principle. (English) Zbl 1071.39005
The authors consider the difference equation model called Leslie/Gower model that played a key historical role in laboratory experiments that helped establish the competitive exclusion principle in ecology. They show that this model has the same dynamic scenarios as the Lotka/Volterra competition model (that is a differential equation). Some anomalous results from the experiments seem to contradict the exclusion principle and Lotka/Volterra dynamics. They give an example of a competition model that has non-Lotka/Volterra dynamics that is consistent with the anomalous case.

MSC:
39A11 Stability of difference equations (MSC2000)
92D40 Ecology
39A12 Discrete version of topics in analysis
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Caswell H, Matrix Population Models: Construction, Analysis and Interpretation (2001)
[2] DOI: 10.1016/0040-5809(85)90030-9 · Zbl 0571.92027 · doi:10.1016/0040-5809(85)90030-9
[3] DOI: 10.1016/S0898-1221(01)00326-1 · Zbl 1001.39017 · doi:10.1016/S0898-1221(01)00326-1
[4] DOI: 10.1016/S0362-546X(02)00294-8 · Zbl 1019.39006 · doi:10.1016/S0362-546X(02)00294-8
[5] Crowe KM, A Discrete Size-Structured Competition Model
[6] DOI: 10.1007/BF00276097 · Zbl 0455.92012 · doi:10.1007/BF00276097
[7] Cushing JM, Lecture Notes in Biomathematics 52 pp 342– (1983)
[8] DOI: 10.1007/BF01236888 · Zbl 0608.92019 · doi:10.1007/BF01236888
[9] Cushing JM, Nat. Res. Modeling 3 pp 331– (1989)
[10] Cushing JM, CBMS-NSF Regional Conference Series in Applied Mathematics 71 (1998)
[11] Cushing JM, Fields Institute Commun.
[12] Cushing JM, Theoretical Ecology Series, Academic Press/Elsevier (2003)
[13] Cushing JM, Lecture Notes in Biomathematics 54 pp 178– (1984)
[14] DOI: 10.1046/j.1365-2656.2003.00743.x · doi:10.1046/j.1365-2656.2003.00743.x
[15] Elaydi SN, An Introduction to Difference Equations (1999) · doi:10.1007/978-1-4757-3110-1
[16] DOI: 10.1007/BF00160333 · Zbl 0735.92023 · doi:10.1007/BF00160333
[17] DOI: 10.1016/0362-546X(91)90163-U · Zbl 0724.92024 · doi:10.1016/0362-546X(91)90163-U
[18] DOI: 10.1016/0022-247X(92)90167-C · Zbl 0778.93012 · doi:10.1016/0022-247X(92)90167-C
[19] DOI: 10.1080/10236199908808185 · Zbl 0934.37042 · doi:10.1080/10236199908808185
[20] DOI: 10.1137/0149050 · Zbl 0676.92013 · doi:10.1137/0149050
[21] Guckenheimer J, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer-Verlag (1983) · Zbl 0515.34001 · doi:10.1007/978-1-4612-1140-2
[22] DOI: 10.1038/46540 · doi:10.1038/46540
[23] DOI: 10.1086/319929 · doi:10.1086/319929
[24] Koch AL, J. Theor. Biol. 44 pp 378– (1974)
[25] Kulenović MRS, Radovi Mathematićki 11 pp 1– (2002)
[26] Leslie PH, Biometrika 45 pp 316– (1958) · Zbl 0087.34501 · doi:10.1093/biomet/45.3-4.316
[27] DOI: 10.2307/2708 · doi:10.2307/2708
[28] DOI: 10.1086/283527 · doi:10.1086/283527
[29] DOI: 10.1016/S0025-5564(01)00073-6 · Zbl 0987.92030 · doi:10.1016/S0025-5564(01)00073-6
[30] Pingzhou Liu, J. Comp. Anal. Appl. 3 pp 53– (2001)
[31] DOI: 10.1006/tpbi.1994.1019 · Zbl 0802.92013 · doi:10.1006/tpbi.1994.1019
[32] DOI: 10.1016/0022-0396(77)90135-8 · Zbl 0353.92007 · doi:10.1016/0022-0396(77)90135-8
[33] DOI: 10.1007/BF00276900 · Zbl 0474.92015 · doi:10.1007/BF00276900
[34] DOI: 10.1016/S0022-5193(84)80216-7 · doi:10.1016/S0022-5193(84)80216-7
[35] DOI: 10.1016/0025-5564(86)90117-3 · Zbl 0603.92018 · doi:10.1016/0025-5564(86)90117-3
[36] DOI: 10.1006/tpbi.1993.1033 · Zbl 0791.92024 · doi:10.1006/tpbi.1993.1033
[37] DOI: 10.2307/1948641 · doi:10.2307/1948641
[38] Park T, Physiol. Zool. 27 pp 177– (1954) · doi:10.1086/physzool.27.3.30152164
[39] Park T, Physiol. Zool. 30 pp 22– (1957) · doi:10.1086/physzool.30.1.30166306
[40] Park T, Physiol. Zool. 37 pp 97– (1964) · doi:10.1086/physzool.37.2.30152328
[41] Smith HL, Cambridge Studies in Mathematical Biology 13 (1995)
[42] Waltman P, Competition Models in Population Biology, CBMS-NSF regional Conference Series in Applied Mathematics, SIAM (1983) · Zbl 0572.92019 · doi:10.1137/1.9781611970258
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.