×

zbMATH — the first resource for mathematics

Waveguiding and mirroring effects in stochastic self-similar and Cantorian \({\mathcal E}^{(\infty)}\) universe. (English) Zbl 1070.83542
Summary: A waveguiding effect is considered with respect to the large scale structure of the Universe, where the structures formation appears as if it were a classically self-similar random process at all astrophysical scales. The result is that it seems we live in an El Naschie’s \({\mathcal E}^{(\infty)}\) Cantorian space-time, where gravitational lensing and waveguiding effects can explain the appearing Universe. In particular, we consider filamentary and planar large scale structures as possible refraction channels for electromagnetic radiation coming from cosmological structures. From this vision the Universe appears like a large self-similar adaptive mirrors set. Consequently, an infinite Universe is just an optical illusion that is produced by mirroring effects connected with the large scale structure of a finite and not so large Universe. Thanks to the presented analytical model supported by a numerical simulation, it is possible to explain the quasar luminosity distribution and the presence of “twin” or “brother” objects. More generally, the infinity and the abundance of astrophysical objects could be just a mirroring effect due to the peculiar self-similarity of the Universe.

MSC:
83F05 Relativistic cosmology
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Schneider, P.; Ehlers, S.; Falco, E.E., Gravitational lenses, (1992), Springer-Verlag
[2] Blioh, P.V.; Minakov, A.A., Gravitational lenses kiev, (1989), Naukova Dumka
[3] Iovane, G.; Laserra, E.; Tortoriello, F.S., Chaos, solitons & fractals, 20, 3, 415, (2004)
[4] Iovane, G.; Varying, G., Chaos, solitons & fractals, 20, 4, 657, (2004)
[5] El Naschie, M.S., Chaos, solitons & fractals, 11, 1149-1162, (2000)
[6] Sidharth, B.J.; Sidharth, B.J., Chaos, solitons & fractals, Chaos, solitons & fractals, 12, 795, (2001)
[7] Capozziello, S., Mod. phys. lett. A, 16, 693, (2001)
[8] Penrose, R., The Emperor’s new mind, (1989), Oxford University Press
[9] El Naschie, M.S., Chaos, solitons & fractals, 9, 3, 517-529, (1998)
[10] El Naschie, M.S., Chaos, solitons & fractals, 9, 931-933, (1998)
[11] Connes, A., Noncommutative geometry, (1994), Academic Press New York · Zbl 0681.55004
[12] Iovane, G.; Laserra, E.; Giordano, P., Chaos, solitons & fractals, 22, 3, 521-528, (2004)
[13] Fan X, White RL, et al. astro-ph/0005414, 2000
[14] Zheng W, Tsvetanov ZI, et al. astro-ph/0005247, 2000
[15] Vilenkin, A., Apj, 282, L51, (1984)
[16] Vilenkin, A., Phys. rep, 121, 263, (1985)
[17] Capozziello, S.; Iovane, G., G&c, 5, 1, 17, (1999)
[18] Capozziello, S.; Iovane, G., A&a, 366, 3, 736, (2001)
[19] Ellis, G.F.R., Nature, 425, 566, (2003)
[20] Luminet, J.P., Nature, 425, 593, (2003)
[21] Mackay, A., Physica A, 114, 609, (1982)
[22] Goldfain, E., Chaos, solitons & fractals, 20, 4, 427, (2004)
[23] Ahmed, N., Chaos, solitons & fractals, 21, 4, 773-781, (2004)
[24] In: Lee methods in optics. Man’ko VI, editor. Lecture notes in physics. vol. 250. Mondragon & Wolf; 1986. p. 193
[25] Kibble, T.V.B., J. phys. A, 9, 1387, (1976)
[26] El Naschie, M.S., Chaos, solitons & fractals, 19, 1, 209, (2004)
[27] El Naschie, M.S., Chaos, solitons & fractals, 16, 637-649, (2003)
[28] El Naschie, M.S., Chaos, solitons & fractals, 19, 5, 1339, (2004)
[29] El Naschie, M.S., Chaos, solitons & fractals, 19, 3, 689, (2004)
[30] Gott, J.R., Apj, 288, 422, (1985)
[31] Vachaspati, T.; Vilenkin, A., Phys. rev. lett, 67, 1057, (1991)
[32] Kolb, E.W.; Turner, M., Early universe, (1990), Addison-Wesley NY
[33] Sylos Labini, F.; Montuori, M.; Pietronero, L., Phys. rep, 293, 61, (1998)
[34] CRONARIO coll., Internal communication, 1998
[35] Conway, J.H.; Slaane, N., Sphere packings lattices and groups, (1993), Springer New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.