×

zbMATH — the first resource for mathematics

Quantum gravity in everyday life: general relativity as an effective field theory. (English) Zbl 1070.83009
Summary: This article is meant as a summary and introduction to the ideas of effective field theory as applied to gravitational systems, ideas which provide the theoretical foundations for the modern use of general relativity as a theory from which precise predictions are possible.

MSC:
83C45 Quantization of the gravitational field
83-02 Research exposition (monographs, survey articles) pertaining to relativity and gravitational theory
PDF BibTeX XML Cite
Full Text: DOI Link EuDML arXiv
References:
[1] Abbott, LF; Deser, S., Charge definition in non-abelian gauge theories, Phys. Lett. B, 116, 259-263, (1982)
[2] Aghababaie, Y., and Burgess, C.P., “Effective Actions, Boundaries and Precision Calculations of Casimir Energies”, (2003), [Online Los Alamos Archive Preprint]: cited on 07 March 2004, http://arxiv.org/abs/hep-th/0304066.
[3] Aghababaie, Y.; Burgess, CP; Parameswaran, S.; Quevedo, F., Towards a naturally small cosmological constant from branes in 6D supergravity, Nucl. Phys. B, 680, 389-414, (2004) · Zbl 1036.83025
[4] Aguirre, A.; Burgess, CP; Friedland, A.; Nolte, D., Astrophysical constraints on modifying gravity at large distances, Class. Quantum Grav., 18, r223-r232, (2001) · Zbl 0994.83001
[5] Akhundov, A.; Bellucci, S.; Shiekh, A., Gravitational interaction to one loop in effective quantum gravity, Phys. Lett. B, 395, 16-23, (1997)
[6] Arnowitt, RL; Deser, S., Quantum Theory of Gravitation: General Formulation and Linearized Theory, Phys. Rev., 113, 745-750, (1959) · Zbl 0083.43201
[7] Arnowitt, RL; Deser, S.; Misner, CW, Dynamical Structure and Definition of Energy in General Relativity, Phys. Rev., 116, 1322-1330, (1959) · Zbl 0092.20704
[8] Arnowitt, RL; Deser, S.; Misner, CW, Canonical Variables for General Relativity, Phys. Rev., 117, 1595-1602, (1960) · Zbl 0091.21203
[9] Arnowitt, RL; Deser, S.; Misner, CW, Consistency of the Canonical Reduction of General Relativity, J. Math. Phys., 1, 434-439, (1960) · Zbl 0098.19103
[10] Arnowitt, RL; Deser, S.; Misner, CW, Energy and the Criteria for Radiation in General Relativity, Phys. Rev., 118, 1100-1104, (1960) · Zbl 0090.44303
[11] Arnowitt, RL; Deser, S.; Misner, CW, Gravitational-Electromagnetic Coupling and the Classical Self-Energy Problem, Phys. Rev., 120, 313-320, (1960) · Zbl 0096.22005
[12] Arnowitt, RL; Deser, S.; Misner, CW, Interior Schwarzschild Solutions and Interpretation of Source Terms, Phys. Rev., 120, 321-324, (1960) · Zbl 0096.22101
[13] Arnowitt, RL; Deser, S.; Misner, CW, Note on Positive-Definiteness of the Energy of the Gravitational Field, Ann. Phys. (N. Y.), 11, 116, (1960) · Zbl 0091.43801
[14] Arnowitt, RL; Deser, S.; Misner, CW, No article title, Nuovo Cimento, 19, 668, (1961)
[15] Arnowitt, RL; Deser, S.; Misner, CW, Coordinate Invariance and Energy Expressions in General Relativity, Phys. Rev., 122, 997-1006, (1961) · Zbl 0094.23003
[16] Arnowitt, RL; Deser, S.; Misner, CW, Wave Zone in General Relativity, Phys. Rev., 121, 1556-1566, (1961) · Zbl 0096.22102
[17] Banks, T.; Mannelli, L., de Sitter vacua, renormalization and locality, Phys. Rev. D, 67, 065009-1-065009-6, (2003) · Zbl 1222.83075
[18] Bern, Z., “Perturbative Quantum Gravity and its Relation to Gauge Theory”, Living Rev. Relativity, 5, lrr-2002-5, (2002), [Online Journal Article]: cited on 07 March 2004, http://www.livingreviews.org/lrr-2002-5.
[19] Birrell, N.D., and Davies, P.C.W., Quantum Fields n Curved Space, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, 1982). · Zbl 0476.53017
[20] Bjerrum-Bohr, NEJ; Donoghue, JF; Holstein, BR, Quantum gravitational corrections to the nonrelativistic scattering potential of two masses, Phys. Rev. D, 67, 084033-1-084033-12, (2003)
[21] Bjerrum-Borh, NEJ; Donoghue, JF; Holstein, BR, Quantum Corrections to the Schwarzschild and Kerr Metrics, Phys. Rev. D, 68, 084005-1-084005-16, (2003)
[22] Brandenberger, RH; Breton, N. (ed.); Cervantes-Cota, J. (ed.); Salgado, M. (ed.), Lectures on the Theory of Cosmological Perturbations, No. volume 646, (2004), Berlin; New York
[23] Brandenberger, RH; Martin, J., The Robustness of Inflation to Changes in Super-Planck-Scale Physics, Mod. Phys. Lett. A, 16, 999-1006, (2001) · Zbl 1138.83379
[24] Brout, R.; Massar, S.; Parentani, R.; Spindel, P., Hawking radiation without trans-Planckian frequencies, Phys. Rev. D, 52, 4559-4568, (1995)
[25] Brown, MR; Duff, MJ, Exact results for effective Lagrangians, Phys. Rev. D, 11, 2124-2135, (1975)
[26] Bunch, TS; Davies, PCW, Quantum Field Theory In De Sitter Space: Renormalization By Point Splitting, Proc. R. Soc. London, Ser. A, 360, 117-134, (1978)
[27] Burgess, C. P., Supersymmetric large extra dimensions and the cosmological constant: an update, Annals of Physics, 313, 383-401, (2004) · Zbl 1054.83028
[28] Burgess, CP; Solà, J. (ed.), An Ode to Effective Lagrangians, 471-488, (1999), Singapore
[29] Burgess, CP, Goldstone and Pseudo-Goldstone Bosons in Nuclear, Particle and Condensed-Matter Physics, Phys. Rep., 330, 193-261, (2000)
[30] Burgess, CP; Cline, JM; Holman, R., Effective field theories and inflation, JCAP, 10, 004, (2003)
[31] Burgess, CP; Cline, JM; Lemieux, F.; Holman, R., Are inflationary predictions sensitive to very high energy physics?, JHEP, 02, 048, (2003)
[32] Callan, CG; Coleman, S.; Wess, J.; Zumino, B., Structure of Phenomenological Lagrangians. II, Phys. Rev., 177, 2247-2250, (1969)
[33] Capper, DM; Duff, MJ; Halpern, L., Photon corrections to the graviton propagator, Phys. Rev. D, 10, 461-467, (1974)
[34] Caswell, WE; Lepage, GP, Effective lagrangians for bound state problems in QED, QCD, and other field theories, Phys. Lett. B, 167, 437-442, (1986)
[35] Chen, T.; Fröhlich, J.; Seifert, M.; David, F. (ed.); Ginsparg, P. (ed.); Zinn-Justin, J. (ed.), Renormalization Group Methods: Landau-Fermi Liquid and BCS Superconductor, No. volume 62, 913-970, (1996), Amsterdam
[36] Christensen, SM, Regularization, renormalization, and covariant geodesic point separation, Phys. Rev. D, 17, 946-963, (1978)
[37] Christensen, SM; Duff, MJ, New gravitational index theorems and super theorems, Nucl. Phys. B, 154, 301-342, (1979) · Zbl 0967.83535
[38] Christensen, SM; Duff, MJ, Quantizing gravity with a cosmological constant, Nucl. Phys. B, 170, 480-506, (1980) · Zbl 0967.83510
[39] Collins, H.; Holman, R.; Martin, MR, The fate of the \(α\)-vacuum, Phys. Rev. D, 68, 1240121-1-124012-15, (2003)
[40] Collins, H., and Martin, M.R., “The enhancement of inflaton loops in an \(α\)-vacuum”, (September, 2003), [Online Los Alamos Archive Preprint]: cited on 07 March 2004, http://arxiv.org/abs/hep-ph/0309265.
[41] Collins, J., Renormalization: An introduction to renormalization, the renormalization group, and the operator-product expansion, (Cambridge University Press, Cambridge; New York, 1984). · Zbl 1094.53505
[42] Corley, S.; Jacobson, T., Hawking spectrum and high frequency dispersion, Phys. Rev. D, 54, 1568-1586, (1996)
[43] Dalvit, DAR; Mazzitelli, FD, Running coupling constants, Newtonian potential, and nonlocalities in the effective action, Phys. Rev. D, 50, 1001-1009, (1994)
[44] Damour, T.; Ruffini, R., Black-hole evaporation in the Klein-Sauter-Heisenberg-Euler formalism, Phys. Rev. D, 14, 332-334, (1976)
[45] Danielsson, UH, Inflation, holography, and the choice of vacuum in de Sitter space, JHEP, 07, 040, (2002)
[46] Danielsson, UH, On the consistency of de Sitter vacua, JHEP, 12, 025, (2002)
[47] Deruelle, N.; Ruffini, R., Klein paradox in a kerr geometry, Phys. Lett. B, 57, 248-252, (1975)
[48] Deser, S.; Jackiw, R., Three-Dimensional Cosmological Gravity: Dynamics Of Constant Curvature, Ann. Phys., 153, 405-416, (1984)
[49] Deser, S.; Jackiw, R.; Hooft, G., Three-Dimensional Einstein Gravity: Dynamics Of Flat Space, Ann. Phys. (N. Y.), 152, 220-235, (1984)
[50] DeWitt, BS, Quantum Theory of Gravity. II. The Manifestly Covariant Theory, Phys. Rev., 162, 1195-1239, (1967) · Zbl 0161.46501
[51] DeWitt, BS, Quantum Theory of Gravity. III. Applications of the Covariant Theory, Phys. Rev., 162, 1239-1256, (1967) · Zbl 0161.46501
[52] DeWitt, BS, Quantum Theory of Gravity. III. Applications of the Covariant Theory, Phys. Rev., 162, 1239-1256, (1967) · Zbl 0161.46501
[53] DeWitt, BS, Errata: Quantum Theory of Gravity, Phys. Rev., 171, 1834, (1968)
[54] DeWitt, BS; DeWitt, BS (ed.); Stora, R. (ed.), The spacetime approach to quantum field theory, Les Houches Summer School Proceedings, Amsterdam
[55] Dirac, PAM, Fixation of Coordinates in the Hamiltonian Theory of Gravitation, Phys. Rev., 114, 924-930, (1959) · Zbl 0085.42402
[56] Donoghue, JF, General relativity as an effective field theory: The leading quantum corrections, Phys. Rev. D, 50, 3874-3888, (1994)
[57] Donoghue, JF, Leading quantum correction to the Newtonian potential, Phys. Rev. Lett., 72, 2996-2999, (1994)
[58] Donoghue, JF; Cornet, F. (ed.); Herrero, MJ (ed.), Introduction to the Effective Field Theory Description of Gravity, 217-240, (1997), Singapore
[59] Donoghue, J.F., Golowich, E., and Holstein, B.R., Dynamics of the Standard Model, (Cambridge University Press, Cambridge; New York, 1992). · Zbl 0875.53008
[60] Donoghue, JF; Holstein, BR; Garbrecht, B.; Konstandin, T., Quantum corrections to the Reissner-Nordström and Kerr-Newman metrics, Phys. Lett. B, 529, 132-142, (2002) · Zbl 0989.83017
[61] Donoghue, JF; Torma, T., Power counting of loop diagrams in general relativity, Phys. Rev. D, 54, 4963-4972, (1996)
[62] Donoghue, JF; Torma, T., Infrared behavior of graviton-graviton scattering, Phys. Rev. D, 60, 024003-1-024003, (1999)
[63] Duff, MJ, Quantum corrections to the Schwarzschild solution, Phys. Rev. D, 9, 1837-1839, (1974)
[64] Dunbar, DC; Norridge, PS, Calculation of graviton scattering amplitudes using string-based methods, Nucl. Phys. B, 433, 181-206, (1995)
[65] Einhorn, M.; Larsen, F., Interacting quantum field theory in de Sitter vacua, Phys. Rev. D, 67, 024001-1-024001-13, (2003)
[66] Einhorn, M.; Larsen, F., Squeezed states in the de Sitter vacuum, Phys. Rev. D, 68, 064002-1-064002-7, (2003)
[67] Einstein, A.; Infeld, L., The Gravitational Equations and the Problem of Motion. II, Ann. Math., 41, 455-464, (1940) · Zbl 0024.13903
[68] Einstein, A.; Infeld, L., No article title, Can. J. Math., 1, 209, (1949)
[69] Einstein, A.; Infeld, L.; Hoffmann, B., The Gravitational Equations and the Problem of Motion, Ann. Math., 39, 65-100, (1938) · JFM 64.0769.01
[70] Fadeev, LD; Popov, VN, Feynman diagrams for the Yang-Mills field, Phys. Lett. B, 25, 29-30, (1967)
[71] Feynman, RP, Quantum theory of gravitation, Acta Phys. Pol., 24, 697-722, (1963)
[72] Fredenhagen, K.; Haag, R., On the Derivation of Hawking Radiation Associated with the Formation of a Black Hole, Commun. Math. Phys., 127, 273-284, (1990) · Zbl 0692.53040
[73] Gasser, J.; Leutwyler, H., Chiral Perturbation Theory to One Loop, Ann. Phys. (N. Y.), 158, 142-210, (1984)
[74] Georgi, H., Weak Interactions and Modern Particle Theory, (Benjamin/Cummings, Menlo Park, CA, USA, 1984).
[75] Georgi, H., Effective Field Theory, Annu. Rev. Nucl. Part. Sci., 43, 209-252, (1995)
[76] Gilkey, PB, The spectral geometry of a Riemannian manifold, J. Differ. Geom., 10, 601-618, (1975) · Zbl 0316.53035
[77] Goldstein, K.; Lowe, DA, A note on \(α\)-vacua and interacting field theory in de Sitter space, Nucl. Phys. B, 669, 325-340, (2003) · Zbl 1031.81037
[78] Goldstein, K.; Lowe, DA, Real-time perturbation theory in de Sitter space, Phys. Rev. D, 69, 023507-1-023507-8, (2004)
[79] Gomis, J.; Weinberg, S., Are nonrenormalizable gauge theories renormalizable?, Nucl. Phys. B, 469, 473-487, (1996) · Zbl 1003.81569
[80] Grisaru, MT; Zak, J., One-loop scalar field contributions to graviton-graviton scattering and helicity non-conservation in quantum gravity, Phys. Lett. B, 90, 237-240, (1980)
[81] Gupta, SN, Quantization of Einstein’s Gravitational Field: General Treatment, Proc. Phys. Soc. London, Sect. A, 65, 608-619, (1952) · Zbl 0047.21502
[82] Gupta, SN, Quantization of Einstein’s Gravitational Field: General Treatment, Proc. Phys. Soc. London, Sect. B, 65, 608-619, (1952) · Zbl 0047.21502
[83] Gupta, SN; Radford, SF, Quantum field-theoretical electromagnetic and gravitational two-particle potentials, Phys. Rev. D, 21, 2213-2225, (1980)
[84] Guralnik, G.S., Hagen, C.R., and Kibble, T.W.B., in Cool, R.L., and Marshak, R.E., eds., Advances in Particle Physics, volume 2, (Wiley, New York, 1968).
[85] Hahn, Y.; Zimmermann, W., An elementary proof of Dyson’s power counting theorem, Commun. Math. Phys., 10, 330-342, (1968) · Zbl 0167.55805
[86] Hamber, HW; Liu, S., On the quantum corrections to the newtonian potential, Phys. Lett. B, 357, 51-56, (1995)
[87] Hambli, N.; Burgess, CP, Hawking radiation and ultraviolet regulators, Phys. Rev. D, 53, 5717-5722, (1996)
[88] Hawking, SW, Black Hole Explosions, Nature, 248, 30-31, (1974) · Zbl 1370.83053
[89] Hawking, SW, Particle Creation by Black Holes, Commun. Math. Phys., 43, 199-220, (1975) · Zbl 1378.83040
[90] Hiida, K.; Okamura, H., Gauge Transformation and Gravitational Potentials, Prog. Theor. Phys., 47, 1743, (1972)
[91] Isgur, N.; Wise, MB, Weak decays of heavy mesons in the static quark approximation, Phys. Lett. B, 232, 113-117, (1989)
[92] Isgur, N.; Wise, MB, Weak transition form factors between heavy mesons, Phys. Lett. B, 237, 527-530, (1990)
[93] Iwasaki, Y., Quantum Theory of Gravitation vs. Classical Theory: Fourth-Order Potential, Prog. Theor. Phys., 46, 1587, (1971)
[94] Jacobson, T., Black-hole evaporation and ultrashort distances, Phys. Rev. D, 44, 1731-1739, (1991)
[95] Jacobson, T., Black hole radiation in the presence of a short distance cutoff, Phys. Rev. D, 48, 728-741, (1993)
[96] Jacobson, T., Introduction to quantum fields in curved space-time and the Hawking effect, Prog. Theor. Phys. Suppl., 136, 1-17, (1999)
[97] Jones, A., and Lasenby, A., “The Cosmic Microwave Background”, Living Rev. Relativity, 1, lrr-1998-11, (1998), [Online Journal Article]: cited on 07 March 2004, http://www.livingreviews.org/lrr-1998-11.
[98] Kaloper, N.; Kleban, M.; Lawrence, A.; Shenker, S.; Susskind, L., Initial Conditions for Inflation, JHEP, 11, 037, (2002)
[99] Kaloper, N.; Kleban, M.; Lawrence, A.; Shenker, S., Signatures of short distance physics in the cosmic microwave background, Phys. Rev. D, 66, 123510-1-123510-21, (2002)
[100] Kaplan, D., “Effective Field Theories”, (June, 1995), [Online Los Alamos Archive Preprint]: cited on 07 March 2004, http://arxiv.org/abs/nucl-th/9506035. Three lectures on effective field theory given at the Seventh Summer School in Nuclear Physics, Seattle June 19-30 1995.
[101] Kaplan, DB; Savage, MJ; Wise, MB, Nucleon-nucleon scattering from effective field theory, Nucl. Phys. B, 478, 629-659, (1996)
[102] Kazakov, KA, Notion of potential in quantum gravity, Phys. Rev. D, 63, 044004-1-044004-10, (2001)
[103] Kirilin, GG; Khriplovich, IB, Quantum Power Correction to the Newton Law, JETP, 95, 981-986, (2002)
[104] Labelle, P., Effective field theories for QED bound states: Extending nonrelativistic QED to study retardation effects, Phys. Rev. D, 58, 093013-1-093013-15, (1998)
[105] Labelle, P.; Zebarjad, SM; Burgess, CP, Nonrelativistic QED and next-to-leading hyperfine splitting in positronium, Phys. Rev. D, 56, 8053-8061, (1997)
[106] Langacker, P., “Electroweak Physics”, (August, 2003), [Online Los Alamos Archive Preprint]: cited on 07 March 2004, http://arxiv.org/abs/hep-ph/0308145. Invited talk presented at the Conference on the Intersections of Particle and Nuclear Physics (CIPANP 2003), New York, May 2003.
[107] Leutwyler, H., “Goldstone Bosons”, (September, 1994), [Online Los Alamos Archive Preprint]: cited on 07 March 2004, http://arxiv.org/abs/hep-ph/9409422. Talk given at the Bose Conference, Jan.94, Calcutta, BUTP 94/17.
[108] Leutwyler, H.; Herscovitz, VE (ed.); Vasconcellos, CA (ed.); Ferreira, E. (ed.), Principles of Chiral Perturbation Theory, 1-46, (1995), Singapore
[109] Luke, ME, Effects of subleading operators in the heavy quark effective theory, Phys. Lett. B, 252, 447-455, (1990)
[110] Luke, ME; Manohar, AV, Bound states and power counting in effective field theories, Phys. Rev. D, 55, 4129-4140, (1997)
[111] Luke, ME; Manohar, AV; Rothstein, IZ, Renormalization group scaling in nonrelativistic QCD, Phys. Rev. D, 61, 074025-1-074025-14, (2000)
[112] Luke, ME; Savage, MJ, Power counting in dimensionally regularized nonrelativistic QCD, Phys. Rev. D, 57, 413-423, (1998)
[113] Mandelstam, S., Feynman Rules for the Gravitational Field from the Coordinate-Independent Field-Theoretic Formalism, Phys. Rev., 175, 1604-1623, (1968)
[114] Manohar, A.; Latal, H. (ed.); Schweiger, W. (ed.), Effective Field Theories, No. 479, 311-362, (1997), Berlin; New York
[115] Martin, J.; Brandenberger, RH, Trans-Planckian problem of inflationary cosmology, Phys. Rev. D, 63, 123501-1-123501-16, (2001)
[116] McAvity, DM; Osborn, H., A DeWitt expansion of the heat kernel for manifolds with a boundary, Class. Quantum Grav., 8, 603-638, (1991) · Zbl 0716.58029
[117] Meissner, UG, Recent Developments in Chiral Perturbation Theory, Rep. Prog. Phys., 56, 903-996, (1993)
[118] Melnikov, K., and Weinstein, M., “A Canonical Hamiltonian Derivation of Hawking Radiation”, (September, 2001), [Online Los Alamos Archive Preprint]: cited on 07 March 2004, http://arxiv.org/abs/hep-th/0109201.
[119] Melnikov, K., and Weinstein, M., “On Unitary Evolution of a Massless Scalar Field In A Schwarzschild Background: Hawking Radiation and the Information Paradox”, (May, 2002), [Online Los Alamos Archive Preprint]: cited on 07 March 2004, http://arxiv.org/abs/hep-th/0205223. · Zbl 1058.83015
[120] Milgrom, M., A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis, Astrophys. J., 270, 365-370, (1983)
[121] Milgrom, M.; Sanders, RH, MOND and the “Dearth of Dark Matter in Ordinary Elliptical Galaxies”, Astrophys. J., 599, l25-l28, (2003)
[122] Misner, C.W., Thorne, K.P., and Wheeler, J.A., Gravitation, (Freeman, W.H., San Francisco, CA, USA, 1973).
[123] Modanese, G., Potential energy in quantum gravity, Nucl. Phys. B, 434, 697-708, (1995) · Zbl 1020.83565
[124] Ovrut, BA; Schnitzer, HJ, The decoupling theorem and minimal subtraction, Phys. Lett. B, 100, 403-406, (1981)
[125] Ovrut, BA; Schnitzer, HJ, Gauge theories with minimal subtraction and the decoupling theorem, Nucl. Phys. B, 179, 381-416, (1981)
[126] Parikh, MK; Wilczek, F., Hawking Radiation As Tunneling, Phys. Rev. Lett., 85, 5042-5045, (2000) · Zbl 1369.83053
[127] Pich, A.; Gupta, R. (ed.); Rafael, E. (ed.); David, F. (ed.); Morel, A. (ed.), Effective Field Theory, No. 68, 949-1049, (1999), Amsterdam
[128] Pineda, A.; Soto, J., Potential NRQED: The positronium case, Phys. Rev. D, 59, 016005-1-016005-10, (1999)
[129] Polchinski, J., Renormalization and effective lagrangians, Nucl. Phys. B, 231, 269-295, (1984)
[130] Polchinski, J.; Harvey, J. (ed.); Polchinski, J. (ed.), Effective Field Theory of the Fermi Surface, (1993), Singapore
[131] Polchinski, J.; Bars, I. (ed.); Bouwknegt, P. (ed.); Minahan, J. (ed.); Nemeschensky, D. (ed.); Pilch, K. (ed.), String Theory and Black Hole Complementarity, 417-426, (1996), Singapore
[132] Redin, SI; etal., Recent results and current status of the muon \(g \)− 2 experiment at BNL, Can. J. Phys., 80, 1355-1364, (2002)
[133] Rho, M., Effective Field Theory for Nuclei and Dense Matter, Acta Phys. Pol. B, 29, 2297-2308, (1998)
[134] Schwinger, JS, On Gauge Invariance and Vacuum Polarization, Phys. Rev., 82, 664-679, (1951) · Zbl 0043.42201
[135] Shankar, R., “Effective Field Theory in Condensed Matter Physics”, (March, 1997), [Online Los Alamos Archive Preprint]: cited on 07 March 2004, http://arxiv.org/abs/cond-mat/9703210. Lecture given at Boston Colloquium for the Philosophy of Science, Boston, Mass., 1996.
[136] Shankar, R., Renormalization-group approach to interacting fermions, Rev. Mod. Phys., 66, 129-192, (1994)
[137] Simon, J., Stability of flat space, semiclassical gravity, and higher derivatives, Phys. Rev. D, 43, 3308-3316, (1991)
[138] Hooft, G.; Veltman, MJG, One loop divergencies in the theory of gravitation, Ann. Inst. Henri Poincare, A, 20, 69-94, (1974)
[139] Tinkham, M., Introduction to Superconductivity, (McGraw Hill, New York, USA, 1996), 2nd edition.
[140] Unruh, WG, Origin of the particles in black-hole evaporation, Phys. Rev. D, 15, 365-369, (1977)
[141] Unruh, WG, Experimental Black-Hole Evaporation?, Phys. Rev. Lett., 46, 1351-1353, (1981)
[142] Wald, R.M., “The Thermodynamics of Black Holes”, Living Rev. Relativity, 4, lrr-2001-6, (2001), [Online Journal Article]: cited on 07 March 2004, http://www.livingreviews.org/lrr-2001-6.
[143] Weinberg, S., High-Energy Behavior in Quantum Field Theory, Phys. Rev., 118, 838-849, (1960) · Zbl 0098.20403
[144] Weinberg, S., Infrared Photons and Gravitons, Phys. Rev., 140, b516-b524, (1965)
[145] Weinberg, S., Dynamical Approach to Current Algebra, Phys. Rev. Lett., 18, 188-191, (1967)
[146] Weinberg, S., Nonlinear Realizations of Chiral Symmetry, Phys. Rev., 166, 1568-1577, (1968)
[147] Weinberg, S., Gravitation and Cosmology: Principles and applications of the general theory of relativity, (Wiley, New York, 1972).
[148] Weinberg, S., Phenomenological Lagrangians, Physica, 96A, 327-340, (1979)
[149] Weinberg, S., Effective gauge theories, Phys. Lett. B, 91, 51-55, (1980)
[150] Weinberg, S.; Guth, AH (ed.); Huang, K. (ed.); Jaffe, RL (ed.), Why the Renormalization Group is a Good Thing, 1-19, (1981), Cambridge, MA, USA
[151] Weinberg, S., Superconductivity for Particular Theorists, Prog. Theor. Phys. Suppl., 86, 43-53, (1986)
[152] Weinberg, S., The cosmological constant problem, Rev. Mod. Phys., 61, 1-23, (1989) · Zbl 1129.83361
[153] Weinberg, S., Nuclear forces from chiral lagrangians, Phys. Lett. B, 251, 288-292, (1990)
[154] Weinberg, S., Effective chiral lagrangians for nucleon-pion interactions and nuclear forces, Nucl. Phys. B, 363, 3-18, (1991)
[155] Wessling, ME; Wise, MB, The long range gravitational potential energy between strings, Phys. Lett. B, 523, 331-337, (2001) · Zbl 0982.81043
[156] Will, C.M., “The Confrontation between General Relativity and Experiment”, Living Rev. Relativity, 4, lrr-2001-4, (2001), [Online Journal Article]: cited on 07 March 2004, http://www.livingreviews.org/lrr-2001-4.
[157] Wilson, KG, Non-Lagrangian Models of Current Algebra, Phys. Rev., 179, 1499-1512, (1969)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.