Caetano, António M.; Moura, Susana D. Local growth envelopes of spaces of generalized smoothness: The subcritical case. (English) Zbl 1070.46020 Math. Nachr. 273, 43-57 (2004). Summary: The concept of local growth envelope (\(\mathcal E_{\text{LG}}A, u\)) of a quasi-normed function space \(A\) is applied to spaces of generalized smoothness \(B^{(s,\Psi)}_{pq} (\mathbb R^n)\) and \(F^{(s,\Psi)}_{pq} (\mathbb R^n)\) and it is shown that the influence of the function \(\Psi\), which is a fine tuning of the main smoothness parameter \(s\), is strong enough in order to show up in the corresponding growth envelopes. Cited in 1 ReviewCited in 17 Documents MSC: 46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems Keywords:function spaces of generalized smoothness; local growth envelopes; essential unboundedness PDF BibTeX XML Cite \textit{A. M. Caetano} and \textit{S. D. Moura}, Math. Nachr. 273, 43--57 (2004; Zbl 1070.46020) Full Text: DOI