×

zbMATH — the first resource for mathematics

A retrial queue with a constant retrial rate, server downs and impatient customers. (English) Zbl 1069.60076
Summary: We consider a retrial queueing system consisting of a waiting line of infinite capacity in front of a single server subject to breakdowns. A customer upon arrival may join the queue (waiting line) or go to the retrial orbit (another queue) to retry for service after a random time. Only the customer at the head of the retrial orbit is allowed to retry for service. Upon retrial, the customer enters the service if the server is idle; otherwise, it may go back to the retrial orbit or leave the system (become impatient). All the interarrival times, service times, server up times, server down times and retrial times are exponential, and all the necessary independence conditions in these variables are assumed. For this system, we provide sufficient conditions under which, for any given number of customers in the orbit, the stationary probability of the number of customers in the waiting line decays geometrically. We also provide explicitly an expression for the decay parameter.

MSC:
60K25 Queueing theory (aspects of probability theory)
90B22 Queues and service in operations research
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1023/A:1019125323347 · Zbl 0918.90073 · doi:10.1023/A:1019125323347
[2] DOI: 10.1016/0167-6377(95)00017-E · Zbl 0836.90072 · doi:10.1016/0167-6377(95)00017-E
[3] Artalejo J. R., Opsearch. 33 pp 83– (1996)
[4] Artalejo J. R., Opsearch. 33 pp 83– (1996)
[5] DOI: 10.1016/S0895-7177(99)00128-4 · doi:10.1016/S0895-7177(99)00128-4
[6] DOI: 10.1016/S0377-2217(00)00330-1 · Zbl 0989.90028 · doi:10.1016/S0377-2217(00)00330-1
[7] DOI: 10.1007/BF01158476 · Zbl 0706.60089 · doi:10.1007/BF01158476
[8] DOI: 10.1017/S0269964800002771 · doi:10.1017/S0269964800002771
[9] DOI: 10.1007/BF01158869 · Zbl 0792.60089 · doi:10.1007/BF01158869
[10] DOI: 10.1007/BF01148947 · Zbl 0836.60100 · doi:10.1007/BF01148947
[11] DOI: 10.1016/S0898-1221(97)00078-3 · Zbl 0878.90041 · doi:10.1016/S0898-1221(97)00078-3
[12] DOI: 10.1016/S0895-7177(99)00135-1 · Zbl 1042.60534 · doi:10.1016/S0895-7177(99)00135-1
[13] DOI: 10.1007/BF01158472 · Zbl 0709.60097 · doi:10.1007/BF01158472
[14] DOI: 10.1007/BF01158878 · Zbl 0790.60076 · doi:10.1007/BF01158878
[15] Falin G. I., Retrial Queues (1997) · Zbl 0944.60005
[16] Fayolle G., Teletraffic Analysis and Computer Performance Evaluation (1986)
[17] Foley R. D., Annals of Applied Probability 11 pp 569– (2001)
[18] Haque L., Tail Behaviour for Stationary Distributions for Two-Dimensional Stochastic Models (2004)
[19] Haque , L. ; Liu , L. ; Zhao , Y. Q. Sufficient conditions for a geometric tail in a QBD process with countably many levels and phases. Accepted by Stochastic Models ; 2004 .
[20] DOI: 10.1287/moor.18.2.423 · Zbl 0771.60080 · doi:10.1287/moor.18.2.423
[21] DOI: 10.1007/BF01158474 · Zbl 0727.60110 · doi:10.1007/BF01158474
[22] DOI: 10.1016/S0377-2217(97)90357-X · Zbl 0948.90043 · doi:10.1016/S0377-2217(97)90357-X
[23] Li Q. L., Matrix-Analytic Methods: Theory and Applications pp 237– (2002)
[24] DOI: 10.1081/STM-120020387 · Zbl 1020.60088 · doi:10.1081/STM-120020387
[25] DOI: 10.2307/1428136 · Zbl 0829.60085 · doi:10.2307/1428136
[26] DOI: 10.1214/aoap/1029962599 · Zbl 0937.60091 · doi:10.1214/aoap/1029962599
[27] DOI: 10.1023/B:QUES.0000021148.33178.0f · Zbl 1056.90035 · doi:10.1023/B:QUES.0000021148.33178.0f
[28] DOI: 10.1239/aap/1103662965 · Zbl 1136.60366 · doi:10.1239/aap/1103662965
[29] Seneta E., 2nd Ed., in: Non-negative Matrices and Markov Chains (1981) · Zbl 1099.60004 · doi:10.1007/0-387-32792-4
[30] DOI: 10.1081/STM-100001397 · Zbl 0985.60074 · doi:10.1081/STM-100001397
[31] DOI: 10.1007/BF01158475 · Zbl 0745.60101 · doi:10.1007/BF01158475
[32] DOI: 10.1007/BF01158950 · Zbl 0810.90046 · doi:10.1007/BF01158950
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.