zbMATH — the first resource for mathematics

Sterilization of canned viscous foods: an optimal control approach. (English) Zbl 1069.49028

49N90 Applications of optimal control and differential games
49K20 Optimality conditions for problems involving partial differential equations
76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
49J20 Existence theories for optimal control problems involving partial differential equations
76D55 Flow control and optimization for incompressible viscous fluids
76R10 Free convection
Full Text: DOI
[1] DOI: 10.1093/imamat/63.3.247 · Zbl 0936.93039 · doi:10.1093/imamat/63.3.247
[2] A. Bermudez and A. Martinez, Control of Distributed Parameter Systems, eds. M. Amouroux and A. El Jai (Pergamon Press, 1990) pp. 405–409.
[3] DOI: 10.1016/0005-1098(94)90033-7 · Zbl 0800.93940 · doi:10.1016/0005-1098(94)90033-7
[4] DOI: 10.1016/S0362-546X(97)00330-1 · Zbl 0897.35065 · doi:10.1016/S0362-546X(97)00330-1
[5] Diaz J. I., Topol. Methods Nonlinear Anal. 11 pp 59–
[6] Engelman M., Numer. Heat Transfer 6 pp 41–
[7] Goncharova O. N., Dinamika Sploshn. Sredy 96 pp 35–
[8] Goncharova O. N., Differential Equations 38 pp 234–
[9] DOI: 10.1111/j.1365-2621.1990.tb03946.x · doi:10.1111/j.1365-2621.1990.tb03946.x
[10] Ladyzhenskaya O. A., Linear and Quasilinear Equations of Parabolic Type (1968)
[11] Lions J. L., Quelques Méthodes de Réesolution des Problemes aux Limites non Linéaires (1969)
[12] DOI: 10.1016/S0362-546X(97)00635-4 · Zbl 0930.35136 · doi:10.1016/S0362-546X(97)00635-4
[13] DOI: 10.1111/j.1365-2621.1985.tb10467.x · doi:10.1111/j.1365-2621.1985.tb10467.x
[14] DOI: 10.1007/978-1-4612-5282-5 · doi:10.1007/978-1-4612-5282-5
[15] DOI: 10.1111/j.1365-2621.1979.tb06468.x · doi:10.1111/j.1365-2621.1979.tb06468.x
[16] DOI: 10.1007/BF01762360 · Zbl 0629.46031 · doi:10.1007/BF01762360
[17] Temam R., Navier–Stokes Equations (1979)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.