×

zbMATH — the first resource for mathematics

Some estimates of solutions for the equations of motion of compressible viscous fluid in the three-dimensional exterior domain. (English) Zbl 1069.35051
Summary: We consider the equations of motion of a compressible viscous fluid in an exterior domain in \(\mathbb R^3\). We give the \(L_q-L_p\) estimates for solutions to the linearized equations and show an optimal decay estimate for solutions to the nonlinear problem. In particular, we give \(L_1\) estimates, which implies the diffusion wave of compressible Navier-Stokes flow.

MSC:
35Q30 Navier-Stokes equations
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bergh, J.; Löfström, J., Interpolation spaces: an introduction, (1976), Springer-Verlag Berlin/Heidelberg/New York · Zbl 0344.46071
[2] Deckelnick, K., Decay estimates for the compressible navier – stokes equations in unbounded domain, Math. Z., 209, 115-130, (1992) · Zbl 0752.35048
[3] Deckelnick, K., L2-decay for the compressible navier – stokes equations in unbounded domains, Comm. partial differential equations, 18, 1445-1476, (1993) · Zbl 0798.35124
[4] Hoff, D.; Zumbrun, K., Multi-dimensional diffusion waves for the navier – stokes equations of compressible flow, Indiana univ. math. J., 44, 604-676, (1995) · Zbl 0842.35076
[5] Hoff, D.; Zumbrun, K., Pointwise decay estimates for multidimensional navier – stokes diffusion waves, Z. angew. math. phys., 48, 597-614, (1997) · Zbl 0882.76074
[6] Iwashita, H., Lp−lq estimates for solutions of the nonstationary Stokes equations in an exterior domain and the navier – stokes initial value problems in lq spaces, Math. ann., 285, 265-268, (1989)
[7] Iwashita, H.; Shibata, Y., On the analyticity of spectral functions for some exterior boundary value problem, Glas. mat. ser. III, 23, 291-313, (1988) · Zbl 0696.35120
[8] Kobayashi, T., On a local energy decay of solutions for the equations of motion of viscous and heat-conductive gases in an exterior domain in \(R\)^3, Tsukuba J. math., 21, 629-670, (1997) · Zbl 1033.35505
[9] Kobayashi, T., On the local energy decay of higher derivatives of solutions for the equations of motion of compressible viscous and heat-conductive gases in an exterior domain in \(R\)^3, Proc. Japan acad. ser. A, 73, 126-129, (1997) · Zbl 0907.76070
[10] Kobayashi, T.; Shibata, Y., On the Oseen equation in the exterior domains, Math. ann., 310, 1-45, (1998) · Zbl 0891.35114
[11] Kobayashi, T.; Shibata, Y., Decay estimates of solutions for the equations of motion of compressible viscous and heat-conductive gases in an exterior domain in \(R\)^3, Comm. math. phys, 200, 621-659, (1999) · Zbl 0921.35092
[12] Liu, T.-P.; Wang, W., The pointwise estimates of diffusion wave for the navier – stokes system in odd multi-dimensions, Comm. math. phys., 196, 145-173, (1998) · Zbl 0912.35122
[13] Matsumura, A.; Nishida, T., The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids, Proc. Japan acad. ser. A, 55, 337-342, (1979) · Zbl 0447.76053
[14] Matsumura, A.; Nishida, T., Initial boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids, Comm. math. phys., 89, 445-464, (1983) · Zbl 0543.76099
[15] Ponce, G., Global existence of small solutions to a class of nonlinear evolution equations, Nonlinear anal., 9, 339-418, (1985) · Zbl 0576.35023
[16] Shibata, Y., On the global existence of classical solutions of second order fully nonlinear hyperbolic equations with first order dissipation in the exterior domain, Tsukuba J. math., 7, 1-68, (1983) · Zbl 0524.35071
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.