×

zbMATH — the first resource for mathematics

Controlling Hopf bifurcations of discrete-time systems in resonance. (English) Zbl 1068.93023
Summary: Resonance in Hopf bifurcation causes complicated bifurcation behaviors. To design with certain desired Hopf bifurcation characteristics in the resonance cases of discrete-time systems, a feedback control method is developed. The controller is designed with the aid of discrete-time washout filters. The control law is constructed according to the criticality and stability conditions of Hopf bifurcations as well as resonance constraints. The control gains associated with linear control terms insure the creation of a Hopf bifurcation in resonance cases and the control gains associated with nonlinear control terms determine the type and stability of bifurcated solutions. To derive the former, we propose the implicit criteria of eigenvalue assignment and transversality condition for creating the bifurcation in a desired parameter location. To derive the latter, the technique of the center manifold reduction, Iooss’s Hopf bifurcation theory and Wan’s Hopf bifurcation theory for resonance cases are employed. In numerical experiments, we show the Hopf circles and fixed points from the created Hopf bifurcations in the strong and weak resonance cases for a four-dimensional control system.

MSC:
93B52 Feedback control
37G15 Bifurcations of limit cycles and periodic orbits in dynamical systems
93C55 Discrete-time control/observation systems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] D’Amico, M.B.; Moiola, J.L.; Paolini, E.E., Hopf bifurcation for maps: a frequency domain approach, IEEE trans. circuits syst.–I, 49, 281-288, (2002) · Zbl 1368.37058
[2] D’Amico, M.B.; Paolini, E.E.; Moiola, J.L., Stability analysis of degenerate Hopf bifurcations for discrete time systems, Lat. am. appl. res., 33, 413-418, (2003)
[3] D’Amico, M.B.; Moiola, J.L.; Paolini, E.E., Controlling bifurcations in maps via a frequency domain approach, Dyn. contin. discrete impuls. syst., ser. B, 10, 781-799, (2003) · Zbl 1030.93019
[4] Chen, G.; Lu, J.; Nicholas, B.; Ranganathan, S.M., Bifurcation dynamics in discrete-time delayed-feedback control systems, Int. J. bifurcat. chaos, 9, 287-293, (1999) · Zbl 0967.93511
[5] Yap, K.C.; Chen, G.; Ueta, T., Controlling bifurcations of discrete maps, Lat. am. appl. res., 31, 157-162, (2001)
[6] Chen, G.; Fang, J.Q.; Hong, Y.G.; Qin, H.S., Controlling Hopf bifurcations: discrete-time systems, Discrete dyn. nature soc., 5, 29-33, (2000) · Zbl 1229.93113
[7] Abed, E.H.; Fu, J.H., Local feedback stabilization and bifurcation control–I: Hopf bifurcation, Syst. contr. lett., 7, 11-17, (1986) · Zbl 0587.93049
[8] Abed, E.H.; Wang, H.O.; Chen, R.C., Stabilization of period doubling bifurcation and implications for control of chaos, Physica D, 70, 154-164, (1994) · Zbl 0807.58033
[9] Wang HO, Abed EH. Control of nonlinear phenomena at the inception of voltage collapse. In: Proceedings of the American Control Conference, San Francisco, CA, June; 1993. p. 2071-5
[10] Lee HC, Abed EH. Washout filters in the bifurcation control of high alpha flight dynamics. In: Proceedings of the American Control Conference; Boston, 1991. p. 206-11
[11] Wang HO, Chen D, Bushnell LG. Control of bifurcations and chaos in heart rhythms. In: Proceedings of Control and Decisions Conference, San Diego, CA, December; 1997. p. 395-400
[12] Brandt, M.E.; Chen, G., Bifurcation control of two nonlinear models of cardiac activity, IEEE tran. circuits syst.–I, 44, 1031-1034, (1997)
[13] Chen, D.; Wang, H.O.; Chen, G., Anti-control of Hopf bifurcation, IEEE trans. circuits syst.-I, 48, 661-672, (2001) · Zbl 1055.93037
[14] Alonso, D.M.; Paolini, E.E.; Moiola, J.L., An experimental application of the anti-control of Hopf bifurcations, Int. J. bifurcat. chaos, 11, 1977-1987, (2001)
[15] Wen, G.L.; Xu, D.; Han, X., On creation of Hopf bifurcations in discrete-time nonlinear systems, Chaos, 12, 350-355, (2002) · Zbl 1080.37567
[16] Iooss, G., Bifurcation of maps and applications, (), 201-222 · Zbl 0408.58019
[17] Wan, Y.H., Bifurcation into invariant tori at points of resonance, Arch. ration. mech. anal., 68, 343-357, (1978) · Zbl 0399.58005
[18] Li, X.; Ono, T.; Lin, R.; Esashi, M., Resonance enhancement of micromachined resonators with strong mechanical-coupling between two degrees of freedom, Microelectron. eng., 65, 1-12, (2003)
[19] Makarov, S.; Ludwig, R.; Apelian, D., Resonant oscillation of a liquid metal column driven by electromagnetic Lorentz force sources, J. acoust. soc. am., 105, 2216-2225, (1999)
[20] Lasalle, J.P., The stability and control of discrete processes, (1986), Springer-Verlag Berlin · Zbl 0606.93001
[21] Kuo, B.C., Analysis and synthesis of sampled-data control systems, (1963), Prentice-Hall Englewood Cliffs, NJ · Zbl 0129.30204
[22] Carr J. Applications of center manifold theory. In: Applied Mathematical Sciences 35, Springer-Verlag, Berlin; 1981. p. 33-6
[23] Aeyels, D., Stabilization of a class of nonlinear systems by a smooth feedback control, Syst. contr. lett., 5, 289-294, (1985) · Zbl 0569.93056
[24] Hill, D.L., On the control of high dimensional chaotic dynamical systems using nonlinear approximations, Int. J. bifurcat. chaos, 11, 1753-1760, (2001)
[25] Wen, G.L.; Xu, D., Implicit criteria of eigenvalue assignment and transversality for bifurcation control in four-dimensional maps, Int. J. bifurcat. chaos, 14, 10, (2004) · Zbl 1129.37339
[26] Aronson, D.G.; Chory, M.A.; Hall, G.R.; McGehee, R.P., Bifurcations from an invariant circle for two-parameter families of maps of the plane: a computer assisted study, Commun. math. phys., 83, 303-354, (1982) · Zbl 0499.70034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.