zbMATH — the first resource for mathematics

Numerical hydrodynamics in general relativity. (English) Zbl 1068.83501
Summary: The current status of numerical solutions for the equations of ideal general relativistic hydrodynamics is reviewed. With respect to an earlier version of the article, the present update provides additional information on numerical schemes, and extends the discussion of astrophysical simulations in general relativistic hydrodynamics. Different formulations of the equations are presented, with special mention of conservative and hyperbolic formulations well-adapted to advanced numerical methods. A large sample of available numerical schemes is discussed, paying particular attention to solution procedures based on schemes exploiting the characteristic structure of the equations through linearized Riemann solvers. A comprehensive summary of astrophysical simulations in strong gravitational fields is presented. These include gravitational collapse, accretion onto black holes, and hydrodynamical evolutions of neutron stars. The material contained in these sections highlights the numerical challenges of various representative simulations. It also follows, to some extent, the chronological development of the field, concerning advances on the formulation of the gravitational field and hydrodynamic equations and the numerical methodology designed to solve them.
Update to the author’s paper [Zbl 0944.83007]: Article revision. Sections 3 and 4 have undergone substantial changes and have been considerably enlarged; almost all sections have been updated. The number of references has been extended from previous 241 to the current 319.

83-08 Computational methods for problems pertaining to relativity and gravitational theory
83-02 Research exposition (monographs, survey articles) pertaining to relativity and gravitational theory
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
Full Text: DOI Link
[1] Abramowicz, M; Jaroszynski, M; Sikora, M, Relativistic, accreting disks, Astron. Astrophys., 63, 221-224, (1978) · Zbl 0375.53036
[2] Abramowicz, MA; Calvani, M; Nobili, L, Runaway instability in accretion disks orbiting black holes, Nature, 302, 597-599, (1983)
[3] Abramowicz, MA; Czerny, B; Lasota, JP; Szuszkiewicz, E, Slim accretion disks, Astrophys. J., 332, 646-658, (1988)
[4] Alcubierre, M; Allen, G; Brügmann, B; Dramlitsch, T; Font, JA; Papadopoulos, P; Seidel, E; Stergioulas, N; Suen, W-M; Takahashi, R, Towards a stable numerical evolution of strongly gravitating systems in general relativity: the conformal treatments, Phys. Rev. D, 62, 044034-1-044034-16, (2000)
[5] Alcubierre, M; Allen, G; Brügmann, B; Seidel, E; Suen, W-M, Towards an understanding of the stability properties of the 3+1 evolution equations in general relativity, Phys. Rev. D, 62, 124011-1-124011-15, (2000)
[6] Alcubierre, M; Brandt, B; Brügmann, B; Holz, D; Seidel, E; Takahashi, R; Thornburg, J, Symmetry without symmetry: numerical simulations of axisymmetric systems using Cartesian grids, Int. J. Mod. Phys. D, 10, 273-290, (2001)
[7] Alcubierre, M; Brügmann, B; Diener, P; Koppitz, M; Pollney, D; Seidel, E; Takahashi, R, Gauge conditions for long-term numerical black hole evolutions without excision, Phys. Rev. D, 67, 084023-1-084023-18, (2002)
[8] Aloy, MA; Ibáñez, JM; Martí, GENESIS: A high-resolution code for threedimensional relativistic hydrodynamics, Astrophys. J. Suppl. Ser., 122, 151-166, (1999)
[9] Aloy, MA; Müller, E; Ibáñez, JM; Martí, JM; MacFadyen, A, Relativistic jets from collapsars, Astrophys. J. Lett., 531, l119-l122, (2000)
[10] Anile, A.M., Relativistic fluids and magneto-fluids, (Cambridge University Press, Cambridg U.K., 1989). 2.1.3, 2.1.3 · Zbl 0701.76003
[11] Anninos, P., “Computational Cosmology: from the Early Universe to the Large Scale Structure”, Living Rev. Relativity, 4, lrr-2001-2, (August, 2001), [Online Journal Article]: cited on 5 July 2002, http://www.livingreviews.org/lrr-2001-2. 4
[12] Anninos, P, Plane-symmetric cosmology with relativistic hydrodynamics, Phys. Rev. D, 58, 064010-1-064010-12, (1998)
[13] Anninos, P; Fragile, PC, Non-oscillatory central difference and artificial viscosity schemes for relativistic hydrodynamics, Astrophys. J. Suppl. Ser., 144, 243-257, (2002)
[14] Arnett, WD, Gravitational collapse and weak interactions, Can. J. Phys., 44, 2553-2594, (1966)
[15] Arnowitt, R; Deser, S; Misner, CW; Witten, L (ed.), The dynamics of general relativity, 227-265, (1962), New York, U.S.A.
[16] Arras, P., Flanagan, E.E., Morsink, S.M., Schenk, A.K., Teukolsky, S.A., and Wasserman, I., “Saturation of the \(r\)-mode instability”, (February, 2002), [Online Los Alamos Archive Preprint]: cited on 5 July 2002, http://xxx.arxiv.org/abs/astro-ph/0202345. Submitted to Astrophys. J. 4.3.1
[17] Balbus, SA, Convective and rotational stability of a dilute plasma, Astrophys. J., 562, 909-917, (2001)
[18] Balbus, SA; Hawley, JA, Instability, turbulence, and enhanced transport in accretion disks, Rev. Mod. Phys., 70, 1-53, (1998)
[19] Balsara, D, Riemann solver for relativistic hydrodynamics, J. Comput. Phys., 114, 284-297, (1994) · Zbl 0810.76062
[20] Balsara, D, Total variation diminishing scheme for relativistic magnetohydrodynamics, Astrophys. J. Suppl. Ser., 132, 83-101, (2001)
[21] Banyuls, F; Font, JA; Ibáñez, JM; Martí, JM; Miralles, JA, Numerical 3+1 general relativistic hydrodynamics: A local characteristic approach, Astrophys. J., 476, 221-231, (1997)
[22] Bardeen, JM; Piran, T, General relativistic axisymmetric rotating systems: coordinates and equations, Phys. Rep., 96, 205-250, (1983)
[23] Bardeen, JM; Press, WH, Radiation fields in the Schwarzschild background, J. Math. Phys., 14, 7-19, (1972)
[24] Baron, E; Cooperstein, J; Kahana, S, Type-II supernovae in 12\(M\)_{⊙} and 15\(M\)_{⊙} stars: the equation of state and general relativity, Phys. Rev. Lett., 55, 126-129, (1985)
[25] Baumgarte, TW; Shapiro, SL, On the numerical integration of einstein’s field equations, Phys. Rev. D, 59, 024007-1-024007-7, (1999) · Zbl 1250.83004
[26] Baumgarte, TW; Shapiro, SL; Teukolsky, SA, Computing supernova collapse to neutron stars and black holes, Astrophys. J., 443, 717-734, (1995)
[27] Benensohn, JS; Lamb, DQ; Taam, RE, Hydrodynamical studies of wind accretion onto compact objects: two-dimensional calculations, Astrophys. J., 478, 723-733, (1997)
[28] Benger, W., “Jean-Luc Movies: /NCSA1999/NeutronStars/Headon”, [Online HTML Document]: cited on 15 October 2002, http://jean-luc.ncsa.uiuc.edu/Movies/NCSA1999/NeutronStars/Headon/. 11
[29] Bethe, HA, Supernova mechanisms, Rev. Mod. Phys., 62, 801-866, (1990)
[30] Bethe, HA; Wilson, JR, Revival of a stalled supernova shock by neutrino heating, Astrophys. J., 295, 14-23, (1985)
[31] Bishop, NT; Gómez, R; Lehner, L; Maharaj, M; Winicour, J, The incorporation of matter into characteristic numerical relativity, Phys. Rev. D, 60, 024005-1-024005-11, (1999)
[32] Blandford, RD, Relativistic accretion, Astrophysical Discs: An EC Summer School, 160, 265, (1999)
[33] Blandford, RD; Begelman, MC, On the fate of gas accreting at a low rate on to a black hole, Mon. Not. R. Astron. Soc., 303, l1-l5, (1999)
[34] Blandford, RD; Payne, DG, Hydromagnetic flows from accretion disks and the production of radio jets, Mon. Not. R. Astron. Soc., 199, 883-903, (1982) · Zbl 0516.76108
[35] Blandford, RD; Rees, M, A ‘twin-exhaust’ model for double radio sources, Mon. Not. R. Astron. Soc., 169, 395-415, (1974)
[36] Blandford, RD; Znajek, RL, Electromagnetic extraction of energy from Kerr black holes, Mon. Not. R. Astron. Soc., 179, 433-456, (1977)
[37] Bodenheimer, P; Woosley, SE, A two-dimensional supernova model with rotation and nuclear burning, Astrophys. J., 269, 281-291, (1983)
[38] Bona, C; Ibáñez, JM; Martí, JM; Massó, J, Shock capturing methods in 1D numerical relativity, Rotating Objects and Relativistic Physics: Proceedings of the El Escorial Summer School on Gravitation and General Relativity 1992: Rotating Objects, 423, 218-226, (1993)
[39] Bona, C; Massó, J, Einstein’s evolution equations as a system of balance laws, Phys. Rev. D, 40, 1022-1026, (1989)
[40] Bona, C; Massó, J; Seidel, E; Stela, J, A new formalism for numerical relativity, Phys. Rev. Lett., 75, 600-603, (1995)
[41] Bonazzola, S; Gourgoulhon, Spectral methods in general relativistic astrophysics, J. Comput. Appl. Math., 109, 433, (1999) · Zbl 0961.85002
[42] Bonazzola, S; Marck, J-A, Efficiency of gravitational radiation from axisymmetric and 3D stellar collapse. I. polytropic case, Astron. Astrophys., 267, 623-633, (1993)
[43] Bondi, H, On spherically symmetric accretion, Mon. Not. R. Astron. Soc., 112, 195-204, (1952)
[44] Bondi, H; Hoyle, F, On the mechanism of accretion by stars, Mon. Not. R. Astron. Soc., 104, 273-282, (1944)
[45] Bondi, H; Burg, MJG; Metzner, AWK, Gravitational waves in general relativity. VII. waves from axi-symmetric isolated systems, Proc. R. Soc. London, Sect.A269, 21-52, (1962) · Zbl 0106.41903
[46] Boris, JP; Book, DL, Flux corrected transport I. SHASTA, a fluid transport algorithm that works, J. Comput. Phys., 11, 38-69, (1973) · Zbl 0251.76004
[47] Bromley, BC; Miller, WA; Pariev, VI, The inner edge of the accretion disk around a supermassive black hole, Nature, 391, 54-56, (1998)
[48] Brown, JD, Rotational instabilities in post-collapse stellar cores, Astrophysical Sources for Ground-Based Gravitational Wave Detectors, 575, 234-245, (2001)
[49] Bruenn, SW, Stellar core collapse: numerical model and infall epoch, Astrophys. J. Suppl. Ser., 58, 771-841, (1985)
[50] Bruenn, SW, The prompt-shock supernova mechanism. I — the effect of the free-proton mass fraction and the neutrino transport algorithm, Astrophys. J., 340, 955-965, (1989)
[51] Bruenn, SW; Guidry, MW (ed.); Strayer, MR (ed.), Numerical simulations of core collapse supernovae, 31-50, (1993), Bristol, U.K.
[52] Canuto, C., Hussaini, M.Y., Quarteroni, A., and Zang, T.A., Spectral methods in fluid dynamics, (Springer-Verlag, Berlin, Germany, 1988). 3.2.2, 3.2.2 · Zbl 0658.76001
[53] Centrella, JM; Wilson, JR, Planar numerical cosmology. I. the different equations, Astrophys. J., 273, 428-435, (1983)
[54] Centrella, JM; Wilson, JR, Planar numerical cosmology. II. the difference equations and numerical tests, Astrophys. J. Suppl. Ser., 54, 229-249, (1984)
[55] Chandrasekhar, S., The mathematical theory of black holes, (Oxford University Press, New York, U.S.A., 1983). 4.2.4 · Zbl 0511.53076
[56] Choptuik, MW, Universality and scaling in gravitational collapse of a massless scalar field, Phys. Rev. Lett., 70, 9-12, (1993)
[57] Chow, E; Monaghan, JJ, Ultrarelativistic SPH, J. Comput. Phys., 134, 296-305, (1997) · Zbl 0887.76046
[58] Colella, P; Woodward, PR, The piecewise parabolic method (PPM) for gas-dynamical simulations, J. Comput. Phys., 54, 174-201, (1984) · Zbl 0531.76082
[59] Colgate, SA, Hot bubbles drive explosions, Nature, 341, 489-490, (1989)
[60] Colgate, SA; White, RH, The hydrodynamic behaviour of supernovae explosions, Astrophys. J., 143, 626-681, (1966)
[61] Davis, SF, A simplified TVD finite difference scheme via artificial viscosity, ICASE Rep., 84, 20, (1984)
[62] Villiers, J-P; Hawley, JF, Three-dimensional hydrodynamic simulations of accretion tori in Kerr spacetimes, Astrophys. J., 577, 866-879, (2002)
[63] Zanna, L; Bucciantini, N, An efficient shock-capturing central-type scheme for multidimensional relativistic flows. I. hydrodynamics, Astron. Astrophys., 390, 1177-1186, (2002) · Zbl 1209.76022
[64] Dimmelmeier, H; Font, JA; Müller, E, Gravitational waves from relativistic rotational core collapse, Astrophys. J., 560, l163-l166, (2001) · Zbl 0997.83018
[65] Dimmelmeier, H; Font, JA; Müller, E, Gravitational waves from relativistic rotational core collapse in axisymmetry, Class. Quantum Grav., 19, 1291-1296, (2002) · Zbl 0997.83018
[66] Dimmelmeier, H; Font, JA; Müller, E, Relativistic simulations of rotational core collapse. I. methods, initial models and code tests, Astron. Astrophys., 388, 917-935, (2002)
[67] Dimmelmeier, H; Font, JA; Müller, E, Relativistic simulations of rotational core collapse II. collapse dynamics and gravitational radiation, Astron. Astrophys., 393, 523-542, (2002) · Zbl 0997.83018
[68] Dolezal, A; Wong, SSM, Relativistic hydrodynamics and essentially non-oscillatory shock capturing schemes, J. Comput. Phys., 120, 266-277, (1995) · Zbl 0840.76047
[69] Donat, R; Font, JA; Ibáñez, JM; Marquina, A, A flux-split algorithm applied to relativistic flows, J. Comput. Phys., 146, 58-81, (1998) · Zbl 0930.76054
[70] Donat, R; Marquina, A, Capturing shock reflections: and improved flux formula, J. Comput. Phys., 125, 42-58, (1996) · Zbl 0847.76049
[71] Dubal, MR; d’Inverno, RA; Vickers, JA, Combining Cauchy and characteristic codes. V. Cauchy-characteristic matching for a spherical spacetime containing a perfect fluid, Phys. Rev. D, 58, 044019-1-044019-12, (1998)
[72] Duez, MD; Baumgarte, TB; Shapiro, SL; Shibata, M; Uryū, K, Comparing the inspiral of irrotational and corotational binary neutron stars, Phys. Rev. D, 65, 024016-1-024016-8, (2002)
[73] Duez, MD; Marronetti, P; Shapiro, SL; Baumgarte, TB, Hydrodynamic simulations in 3+1 general relativity, Phys. Rev. D, 67, 024004-1-024004-22, (2003)
[74] Dykema, P.G., Numerical simulation of axisymmetric gravitational collapse, PhD Thesis, (University of Texas at Austin, Austin, TX, U.S.A., 1980). 4.1.2
[75] Einfeldt, B, On Godunov-type methods for gas dynamics, SIAM J. Numer. Anal., 25, 294-318, (1988) · Zbl 0642.76088
[76] Eulderink, F., Numerical relativistic hydrodynamics, PhD Thesis, (Rijksuniversitet Leiden, Leiden, Netherlands, 1993). 2.2.1, 2.2.1
[77] Eulderink, F; Mellema, G, Special relativistic jet collimation by inertial confinement, Astron. Astrophys., 284, 654-662, (1994)
[78] Eulderink, F; Mellema, G, General relativistic hydrodynamics with a roe solver, Astron. Astrophys. Suppl., 110, 587-623, (1995)
[79] Evans, C; Centrella, JM (ed.), An approach for calculating axisymmetric gravitational collapse, 3-39, (1986), Cambridge, U.K.
[80] Evans, C; Hawley, JF, Simulation of magnetohydrodynamic flows: a constrained transport method, Astrophys. J., 332, 659-677, (1988)
[81] Evans, CR; Coleman, JS, Critical phenomena and self-similarity in the gravitational collapse of radiation fluid, Phys. Rev. Lett., 72, 1782-1785, (1994)
[82] Evans, CR; Smarr, LL; Wilson, JR, Numerical relativistic gravitational collapse with spatial time slices, Astrophysical Radiation Hydrodynamics, 188, 491-529, (1986)
[83] Falle, SAEG; Komissarov, SS, An upwind numerical scheme for relativistic hydrodynamics with a general equation of state, Mon. Not. R. Astron. Soc., 278, 586-602, (1996)
[84] Finn, LS; Evans, CR, Determining gravitational radiation from Newtonian self-gravitating systems, Astrophys. J., 351, 588-600, (1990)
[85] Flanagan, EE, Possible explanation for star-crushing effect in binary neutron star simulations, Phys. Rev. Lett., 82, 1354-1357, (1999)
[86] Font, JA; Daigne, F, On the stability of thick accretion disks around black holes, Astrophys. J., 581, l23-l26, (2002) · Zbl 0960.81046
[87] Font, JA; Daigne, F, The runaway instability of thick discs around black holes — I. the constant angular momentum case, Mon. Not. R. Astron. Soc., 334, 383-400, (2002)
[88] Font, JA; Dimmelmeier, H; Gupta, A; Stergioulas, N, Axisymmetric modes of rotating relativistic stars in the cowling approximation, Mon. Not. R. Astron. Soc., 325, 1463-1470, (2001)
[89] Font, JA; Goodale, T; Iyer, S; Miller, M; Rezzolla, L; Seidel, E; Stergioulas, N; Suen, W-M; Tobias, M, Three-dimensional general relativistic hydrodynamics. II: longterm dynamics of single relativistic stars, Phys. Rev. D, 65, 084024-1-084024-18, (2002)
[90] Font, JA; Ibáñez, JM, Non-axisymmetric relativistic Bondi-Hoyle accretion onto a Schwarzschild black hole, Mon. Not. R. Astron. Soc., 298, 835-846, (1998)
[91] Font, JA; Ibáñez, JM, A numerical study of relativistic Bondi-Hoyle accretion onto a moving black hole: axisymmetric computations in a Schwarzschild background, Astrophys. J., 494, 297-316, (1998)
[92] Font, J.A., Ibáñez, J.M., and Martí, J.M., unpublished, (2002). 3.1.3
[93] Font, JA; Ibáñez, JM; Martí, JM; Marquina, A, Multidimensional relativistic hydrodynamics: characteristic fields and modern high-resolution shock-capturing schemes, Astron. Astrophys., 282, 304-314, (1994)
[94] Font, JA; Ibáñez, JM; Papadopoulos, P, A horizon-adapted approach to the study of relativistic accretion flows onto rotating black holes, Astrophys. J. Lett., 507, l67-l70, (1998)
[95] Font, JA; Ibáñez, JM; Papadopoulos, P, Non-axisymmetric relativistic Bondi-Hoyle accretion onto a Kerr black hole, Mon. Not. R. Astron. Soc., 305, 920-936, (1999)
[96] Font, JA; Miller, M; Suen, W-M; Tobias, M, Three-dimensional numerical general relativistic hydrodynamics: formulations, methods and code tests, Phys. Rev. D, 61, 044011-1-044011-26, (2000)
[97] Font, JA; Stergioulas, N; Kokkotas, K, Nonlinear hydrodynamical evolution of rotating relativistic stars: numerical methods and code tests, Mon. Not. R. Astron. Soc., 313, 678-688, (2000)
[98] Frank, J., King, A., and Raine, D., Accretion power in astrophysics, (Cambridge University Press, Cambridge, U.K., 1992). 4.2
[99] Friedrich, H; Friedrich, H (ed.); Frauendiener, J (ed.), Conformal Einstein evolution, 1-50, (2002), Berlin, Germany · Zbl 1054.83006
[100] Friedrichs, KO, On the laws of relativistic electromagneto-fluid dynamics, Commun. Pure Appl. Math., 27, 749-808, (1974) · Zbl 0308.76075
[101] Fryer, C; Heger, A, Core-collapse simulations of rotating stars, Astrophys. J., 541, 1033-1050, (2000)
[102] Fryer, C; Holz, DE; Heger, A, Gravitational wave emission from core collapse of massive stars, Astrophys. J., 565, 430-446, (2002)
[103] Fryxell, B.A., Müller, E., and Arnett, W.D., “Hydrodynamics and nuclear burning”, Max-Planck-Institut für Astrophysik Preprint, 449, (1989). 4.1.1
[104] Gingold, RA; Monaghan, JJ, Smoothed particle hydrodynamics — theory and application to non-spherical stars, Mon. Not. R. Astron. Soc., 181, 375-389, (1977) · Zbl 0421.76032
[105] Gingold, RA; Monaghan, JJ, Kernel estimates as a basis for general particle methods in hydrodynamics, J. Comput. Phys., 463, 429-453, (1982) · Zbl 0487.76010
[106] Glaister, P, An approximate linearised Riemann solver for the Euler equations for real gases, J. Comput. Phys., 74, 382-408, (1988) · Zbl 0632.76079
[107] Glendening, N.K., Compact stars. Nuclear physics, particle physics and general relativity, Astronomy and astrophysics library, (Springer-Verlag, Berlin, Germany, 1997). 4.1.1
[108] Godunov, SK, A finite difference method for the numerical computation and discontinuous solutions of the equations of fluid dynamics, Mat. Sb., 47, 271-306, (1959) · Zbl 0171.46204
[109] Gómez, R; Papadopoulos, P; Winicour, J, Null cone evolution of axisymmetric vacuum space-times, J. Math. Phys., 35, 4184-4204, (1994) · Zbl 0814.35136
[110] Gottlieb, D., and Orszag, S.A., Numerical analysis of spectral methods: theory and applications, (Society for Industrial and Applied Mathematics, Philadelphia, U.S.A., 1977). 3.2.2, 3.2.2 · Zbl 0412.65058
[111] Gourgoulhon, E, Simple equations for general relativistic hydrodynamics in spherical symmetry applied to neutron star collapse, Astron. Astrophys., 252, 651-663, (1991)
[112] Gourgoulhon, E; Grandclément, P; Taniguchi, K; Marck, J-A; Bonazzola, S, Quasiequilibrium sequences of synchronized and irrotational binary neutron stars in general relativity: method and tests, Phys. Rev. D, 63, 064029-1-064029-27, (2001)
[113] Gressman, P; Lin, L-P; Suen, W-M; Stergioulas, N; Friedman, JL, Nonlinear rmodes in neutron stars: instability of an unstable mode, Phys. Rev. D, 66, 041303-1-041303-5, (2002)
[114] Gundlach, C., “Critical Phenomena in Gravitational Collapse”, Living Rev. Relativity, 2, lrr-1999-4, (December, 1999), [Online Journal Article]: cited on 4 July 2002, http://www.livingreviews.org/lrr-1999-4. 4.1.3 · Zbl 0944.83020
[115] Harten, A, On a class of high resolution total-variation stable finite difference schemes, SIAM J. Numer. Anal., 21, 1-23, (1984) · Zbl 0547.65062
[116] Harten, A; Engquist, B; Osher, S; Chakrabarthy, SR, Uniformly high order accurate essentially non-oscillatory schemes, III, J. Comput. Phys., 71, 231-303, (1987) · Zbl 0652.65067
[117] Harten, A; Lax, PD; Leer, B, On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Rev., 25, 35-61, (1983) · Zbl 0565.65051
[118] Haugan, MP; Shapiro, SL; Wasserman, I, The suppression of gravitational radiation from finite-size stars falling into black holes, Astrophys. J., 257, 283-290, (1982)
[119] Hawke, I., “Whisky — the EU Network GR Hydrodynamics code”, [Online HTML Document]: cited on 2 October 2002, http://www.aei-potsdam.mpg.de/ hawke/Whisky.html. 3.3
[120] Hawley, JF; Centrella, JM (ed.), General relativistic hydrodynamics near black holes, 101-122, (1986), Cambridge, U.K.
[121] Hawley, JF, Three-dimensional simulations of black hole tori, Astrophys. J., 381, 496-507, (1991)
[122] Hawley, JF; Smarr, LL; Wilson, JR, A numerical study of nonspherical black hole accretion. I. equations and test problems, Astrophys. J., 277, 296-311, (1984)
[123] Hawley, JF; Smarr, LL; Wilson, JR, A numerical study of nonspherical black hole accretion. II. finite differencing and code calibration, Astrophys. J. Suppl. Ser., 55, 211-246, (1984)
[124] Hernández, WC; Misner, CW, Observer time as a coordinate in relativistic spherical hydrodynamics, Astrophys. J., 143, 452-464, (1966)
[125] Hoyle, F; Lyttleton, RA, No article title, Proc. Cambridge Philos. Soc., 35, 405, (1939)
[126] Ibáñez, JM, Numerical reltivistic hydrodynamics, Rotating Objects and Relativistic Physics: Proceedings of the El Escorial Summer School on Gravitation and General Relativity 1992: Rotating Objects, 423, 149-183, (1993)
[127] Ibáñez, JM; Aloy, MA; Font, JA; Martí, JM; Miralles, JA; Pons, JA; Toro, EF (ed.), Riemann solvers in general relativistic hydrodynamics, 485-496, (2001), New York, U.S.A. · Zbl 1064.76567
[128] Ibáñez, JM; Martí, JM, Riemann solvers in relativistic astrophysics, J. Comput. Appl. Math., 109, 173-211, (1999) · Zbl 0945.76060
[129] Ibáñez, JM; Martí, JM; Miralles, JA; Romero, JV; d’Inverno, R (ed.), Godunov-type methods applied to general relativistic stellar collapse, 223-229, (1992), Cambridge, U.K.
[130] Igumenshchev, IV; Abramowicz, MA; Narayan, R, Numerical simulations of convective accretion flows in three dimensions, Astrophys. J., 537, l27-l30, (2000) · Zbl 0603.65037
[131] Igumenshchev, IV; Belodorov, AM, Numerical simulations of thick disc accretion on to a rotating black hole, Mon. Not. R. Astron. Soc., 284, 767-772, (1997)
[132] Imshennik, VS; Nadezhin, DK, SN 1987A and rotating neutron star formation, Sov. Astron. Lett., 18, 79-88, (1992)
[133] Isaacson, RA; Welling, JS; Winicour, J, Null cone computation of gravitational radiation, J. Math. Phys., 24, 1824-1834, (1983)
[134] Janka, H-T; Kifonidis, K; Rampp, M, Supernova explosions and neutron star formation, Lect. Notes Phys., 578, 333-363, (2001)
[135] Janka, H-T; Mönchmeyer, R, Hydrostatic post bounce configurations of collapse rotating cores: neutrino emission, Astron. Astrophys., 226, 69-87, (1989)
[136] Janka, H-T; Zwerger, T; Mönchmeyer, R, Does artificial viscosity destroy prompt type-II supernova explosions?, Astron. Astrophys., 268, 360-368, (1993)
[137] Kheyfets, A; Miller, WA; Zurek, WH, Covariant smoothed particle hydrodynamics on a curved background, Phys. Rev. D, 41, 451-454, (1990)
[138] Kifonidis, K; Plewa, T; Janka, H-T; Müller, E, Nucleosynthesis and clump formation in a core collapse supernova, Astrophys. J. Lett., 531, l123-l126, (2000)
[139] Kley, W; Schäfer, G, Relativistic dust disks and the Wilson-mathews approach, Phys. Rev. D, 60, 027501, (1999)
[140] Koide, S; Meier, DL; Shibata, K; Kudoh, T, General relativistic simulations of early jet formation in a rapidly rotating black hole magnetosphere, Astrophys. J., 536, 668-674, (2000)
[141] Koide, S; Shibata, K; Kudoh, T, General relativistic magnetohydrodynamic simulations of jets from black hole accretion disks: two-component jets driven by nonsteady accretion of magnetized disks, Astrophys. J., 495, l63-l66, (1998)
[142] Koide, S; Shibata, K; Kudoh, T; Meier, DL, Extraction of black hole rotational energy by a magnetic field and the formation of relativistic jets, Science, 295, 1688-1691, (2002)
[143] Komissarov, SS, A Godunov-type scheme for relativistic magnetohydrodynamics, Mon. Not. R. Astron. Soc., 303, 343-366, (1999)
[144] Kormendy, J; Richstone, D, Inward bound: the search for supermassive black holes in galactic nuclei, Annu. Rev. Astron. Astrophys., 33, 581-624, (1995)
[145] Kurganov, A; Tadmor, E, New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations, J. Comput. Phys., 160, 241-282, (2000) · Zbl 0987.65085
[146] Laguna, P; Miller, WA; Zurek, WH, Smoothed particle hydrodynamics near a black hole, Astrophys. J., 404, 678-685, (1993)
[147] Laguna, P; Miller, WA; Zurek, WH; Davies, MB, Tidal disruptions by supermassive black holes: hydrodynamic evolution of stars on a Schwarzschild background, Astrophys. J., 410, l83-l86, (1993)
[148] Lattimer, JM; Swesty, FD, A generalized equation of state for hot, dense matter, Nucl. Phys. A, 535, 331-376, (1991)
[149] Lax, P.D., Hyperbolic systems of conservation laws and the mathematical theory of shock waves, volume 11 of CBMS-NSF Regional Conference Series in Applied Mathematics, (Society for Industrial and Applied Mathematics, Philadelphia, U.S.A., 1973). 3.1.2 · Zbl 0268.35062
[150] Lax, PD; Wendroff, B, Systems of conservation laws, Commun. Pure Appl. Math., 13, 217-237, (1960) · Zbl 0152.44802
[151] Lehner, L, Numerical relativity: a review, Class. Quantum Grav., 18, 25-86, (2001) · Zbl 0987.83001
[152] LeVeque, R.J., Numerical Methods for Conservation Laws, (Birkhäuser-Verlag, Basel, Switzerland, 1992). 2.1.3, 3, 3.1, 3.1.2 · Zbl 0847.65053
[153] LeVeque, RJ; Steiner, O (ed.); Gautschy, A (ed.), Nonlinear conservation laws and finite volume methods for astrophysical fluid flow, 1-159, (1998), Germany
[154] Liebendörfer, M; Mezzacappa, A; Tielemann, F-K; Messer, OEB; Hix, WR; Bruenn, SW, Probing the gravitational well: no supernova explosion in spherical symmetry with general relativistic Boltzmann neutrino transport, Phys. Rev. D, 63, 103004-1-103004-13, (2001)
[155] Lindblom, L; Tohline, JE; Vallisneri, M, Nonlinear evolution of the r-modes in neutron stars, Phys. Rev. Lett., 86, 1152-1155, (2001)
[156] Linke, F; Font, JA; Janka, H-T; Müller, E; Papadopoulos, P, Spherical collapse of supermassive stars: neutrino emission and gamma ray bursts, Astron. Astrophys., 376, 568-579, (2001)
[157] L’Observatoire de Paris, “Langage Objet pour la RElativité NumériquE”, [Online HTML Document]: cited on 13 September 2002, http://www.lorene.obspm.fr. 3.2.2
[158] Lucy, LB, A numerical approach to the testing of the fission hypothesis, Astron. J., 82, 1013-1024, (1977)
[159] Maison, D, Non-universality of critical behaviour in spherically symmetric gravitational collapse, Phys. Lett. B, 366, 82-84, (1996)
[160] Mann, PJ, A relativistic smoothed particle hydrodynamics method tested with the shock tube, Comput. Phys. Commun., 67, 245-260, (1991) · Zbl 0875.76740
[161] Martí, J.M., Hidrodinámica relativista numérica: aplicaciones al colapso estelar, PhD Thesis, (Universidad de Valencia, Valencia, Spain, 1991). In Spanish. 2.1.3, 4.1.1
[162] Martí, JM; Ibáñez, JM; Miralles, JA, Godunov-type methods for stellar collapse, Astron. Astrophys., 235, 535-542, (1990) · Zbl 0715.76029
[163] Martí, JM; Ibáñez, JM; Miralles, JA, Numerical relativistic hydrodynamics: local characteristic approach, Phys. Rev. D, 43, 3794-3801, (1991)
[164] Martí, J.M., and Müller, E., “Numerical Hydrodynamics in Special Relativity”, Living Rev. Relativity, 2, lrr-1999-3, (June, 1999), [Online HTML Document]: cited on 1 July 1999, http://www.livingreviews.org/lrr-1999-3. 3, 3.1.2, 3.1.2
[165] Martí, JM; Müller, E, The analytical solution of the Riemann problem in relativistic hydrodynamics, J. Fluid Mech., 258, 317-333, (1994) · Zbl 0806.76098
[166] Martí, JM; Müller, E, Extension of the piecewise parabolic method to one-dimensional relativistic hydrodynamics, J. Comput. Phys., 123, 1-14, (1996) · Zbl 0839.76056
[167] Martí, JM; Müller, E; Font, JA; Ibáñez, JM; Marquina, A, Morphology and dynamics of relativistic jets, Astrophys. J., 479, 151-163, (1997)
[168] Mathews, GJ; Marronetti, P; Wilson, JR, Relativistic hydrodynamics in close binary systems: analysis of neutron-star collapse, Phys. Rev. D, 58, 043003-1-043003-13, (1998)
[169] Mathews, GJ; Wilson, JR, Revised relativistic hydrodynamical model for neutronstar binaries, Phys. Rev. D, 61, 127304-1-127304-4, (2000)
[170] Max Planck Institute for Gravitational Physics, “NCSA/LCA — Potsdam — WashU International Numerical Relativity Group”, [Online HTML Document]: cited on 13 September 2002, http://jean-luc.aei.mpg.de. 3.3.2
[171] Max Planck Institute for Gravitational Physics, “The Cactus Code Server”, [Online HTML Document]: cited on 13 September 2002, http://www.cactuscode.org. 3.3.2
[172] May, MM; White, RH, Hydrodynamic calculations of general relativistic collapse, Phys. Rev. D, 141, 1232-1241, (1966)
[173] May, MM; White, RH, Stellar dynamics and gravitational collapse, Methods Comput. Phys., 7, 219-258, (1967)
[174] Mayle, R; Wilson, JR; Schramm, DN, Neutrinos from gravitational collapse, Astrophys. J., 318, 288-306, (1987)
[175] McAbee, TL; Wilson, JR, Mean-field pion calculations of heavy-ion collisions at bevalac energies, Nucl. Phys. A, 576, 626-638, (1994)
[176] Meier, DL, Multidimensional astrophysical structural and dynamical analysis. I. development of a nonlinear finite element approach, Astrophys. J., 518, 788-813, (1999)
[177] Mezzacappa, A; Liebendörfer, M; Messer, OEB; Hix, WR; Tielemann, F-K; Bruenn, SW, Simulation of the spherically symmetric stellar core collapse, bounce and postbounce evolution of a 13 solar mass star with Boltzmann neutrino transport and its implications for the supernova mechanism, Phys. Rev. Lett., 86, 1935-1938, (2001)
[178] Mezzacappa, A; Matzner, RA, Computer simulation of time-dependent, spherically symmetric spacetimes containing radiating fluids — formalism and code tests, Astrophys. J., 343, 853-873, (1989)
[179] Michel, FC, Accretion of matter by condensed objects, Astrophys. and Space Science, 15, 153-160, (1972)
[180] Mihalas, D., and Mihalas, B., Foundations of radiation hydrodynamics, (Oxford University Press, Oxford, U.K., 1984). 2.3 · Zbl 0651.76005
[181] Miller, JC; Motta, S, Computations of spherical gravitational collapse using null slicing, Class. Quantum Grav., 6, 185-193, (1989)
[182] Miller, JC; Sciama, DW; Held, A (ed.), Gravitational collapse to the black hole state, 359-391, (1980), New York, U.S.A.
[183] Miller, M; Suen, W-M; Tobias, M, Shapiro conjecture: prompt or delayed collapse in the head-on collision of neutron stars?, Phys. Rev. D, 63, 121501-1-121501-5, (2001)
[184] Miralles, JA; Ibáñez, JM; Martí, JM; Pérez, A, Incompressibility of hot nuclear matter, general relativistic stellar collapse and shock propagation, Astron. Astrophys. Suppl., 90, 283-299, (1991)
[185] Misner, CW; Sharp, DH, Relativistic equations for adiabatic, spherically symmetric, gravitational collapse, Phys. Rev., 136, 571-576, (1964) · Zbl 0129.41102
[186] Misner, C.W., Thorne, K.S., and Wheeler, J.A., Gravitation, (W.H. Freeman, San Francisco, U.S.A., 1973). 1
[187] Monaghan, JJ, Smoothed particle hydrodynamics, Annu. Rev. Astron. Astrophys., 30, 543-574, (1992)
[188] Mönchmeyer, R; Schäfer, G; Müller, E; Kates, RE, Gravitational waves from the collapse of rotating stellar cores, Astron. Astrophys., 246, 417-440, (1991)
[189] Müller, E., “MPA Hydro Gang”, [Online HTML Document]: cited on 13 September 2002, http://www.mpa-garching.mpg.de/Hydro/hydro.html. 4.1.1, 4.1.1
[190] Müller, E, Gravitational radiation from collapsing rotating stellar cores, Astron. Astrophys., 114, 53-59, (1982)
[191] Müller, E; Steiner, O (ed.); Gautschy, A (ed.), Simulation of astrophysical fluid flow, 343-494, (1998), Berlin, Germany · Zbl 0930.76073
[192] Müller, I., “Speeds of propagation in classical and relativistic extended thermodynamics”, Living Rev. Relativity, 2, lrr-1999-1, (June, 1999), [Online Journal Article]: cited on 17 April 2003, http://www.livingreviews.org/lrr-1999-1. 2.3
[193] Nakamura, T, General relativistic collapse of axially symmetric stars leading to the formation of rotating black holes, Prog. Theor. Phys., 65, 1876-1890, (1981)
[194] Nakamura, T, General relativistic collapse of accreting neutron stars with rotation, Prog. Theor. Phys., 70, 1144-1147, (1983)
[195] Nakamura, T; Maeda, K; Miyama, S; Sasaki, M, General relativistic collapse of an axially symmetric star, Prog. Theor. Phys., 63, 1229-1244, (1980)
[196] Nakamura, T; Oohara, K, A way to 3D numerical relativity, Numerical Astrophysics, Proceedings of the International Conference on Numerical Astrophysics 1998 (Nap98), Tokyo, Japan, 240, 247, (1999)
[197] Nakamura, T; Oohara, K; Kojima, Y, General relativistic collapse to black holes and gravitational waves from black holes, Prog. Theor. Phys., 90, 1-218, (1987)
[198] Nakamura, T; Sasaki, M, Is collapse of a deformed star always effectual for gravitational radiation?, Phys. Lett., 106B, 69-72, (1981)
[199] Nakamura, T; Sato, H, General relativistic collapse of non-rotating, axisymmetric stars, Prog. Theor. Phys., 67, 1396-1405, (1982)
[200] Narayan, R; Mahadevan, R; Quataert, E; Abramowicz, MA (ed.); Bjornsson, G (ed.); Pringle, JE (ed.), Advection-dominated accretion around black holes, 148, (1999), Cambridge, U.K.
[201] Narayan, R; Paczyński, B; Piran, T, Gamma-ray bursts as the death throes of massive binary stars, Astrophys. J., 395, l83-l86, (1992)
[202] Narayan, R; Yi, I, Advection-dominated accretion: A self-similar solution, Astrophys. J., 428, l13-l16, (1994) · Zbl 0728.35144
[203] Neilsen, DW; Choptuik, MW, Critical phenomena in perfect fluids, Class. Quantum Grav., 17, 761-782, (2000) · Zbl 0952.83027
[204] Neilsen, DW; Choptuik, MW, Ultrarelativistic fluid dynamics, Class. Quantum Grav., 17, 733-759, (2000) · Zbl 0963.83027
[205] Nessyahu, H; Tadmor, E, Non-oscillatory central differencing for hyperbolic conservation laws, J. Comput. Phys., 87, 408-463, (1990) · Zbl 0697.65068
[206] New, K.C.B., “Gravitational waves from gravitational collapse”, Living Rev. Relativity, 6, lrr-2003-2, (June, 2003), [Online Journal Article]: cited on 18 June 2002, http://www.livingreviews.org/lrr-2003-2. 1, 4.1 · Zbl 1023.83009
[207] Noh, WF, Errors for calculations of strong shocks using an artificial viscosity and an artificial heatflux, J. Comput. Phys., 72, 78-120, (1987) · Zbl 0619.76091
[208] Norman, ML; Winkler, K-HA; Norman, ML (ed.); Winkler, K-HA (ed.), Why ultrarelativistic numerical hydrodynamics is difficult?, 449-475, (1986), Dordrecht, Netherlands
[209] Novak, J, Spherical neutron star collapse in tensor-scalar theory of gravity, Phys. Rev. D, 57, 4789-4801, (1998)
[210] Novak, J, Velocity-induced collapses of stable neutron stars, Astron. Astrophys., 376, 606-613, (2001)
[211] Novak, J; Ibáñez, JM, Gravitational waves from the collapse and bounce of a stellar core in tensor-scalar gravity, Astrophys. J., 533, 392-405, (2000)
[212] Oleinik, O, Discontinuous solutions and non-linear different equations, Am. Math. Soc. Transl. Ser., 26, 95-172, (1957) · Zbl 0131.31803
[213] Oohara, K; Nakamura, T, Gravitational radiation from a particle scattered by a nonrotating black hole, Phys. Lett. A, 98, 407-410, (1983)
[214] Oohara, K; Nakamura, T; Lasota, J-P (ed.); Marck, J-A (ed.), Coalescence of binary neutron stars, 309-334, (1997), Cambridge, U.K.
[215] Paczyński, B, Gamma-ray bursters at cosmological distances, Astrophys. J., 308, l43-l46, (1986)
[216] Paczyński, B, Are gamma-ray bursts in star-forming regions?, Astrophys. J., 494, l45-l48, (1998) · Zbl 0916.58015
[217] Paczyński, B; Wiita, PJ, Thick accretion disks and supercritical luminosities, Astron. Astrophys., 88, 23-31, (1980)
[218] Papadopoulos, P., and Font, J.A., “Analysis of relativistic hydrodynamics in conservation form”, (December, 1999), [Online Los Alamos Archive Preprint]: cited on 1 February 2000, http://xxx.arxiv.org/abs/gr-qc/9912054. 2.1.2, 2.2, 2.2.2, 2.2.2
[219] Papadopoulos, P; Font, JA, Relativistic hydrodynamics around black holes and horizon adapted coordinate systems, Phys. Rev. D, 58, 024005-1-024005-10, (1998)
[220] Papadopoulos, P; Font, JA, Matter flows around black holes and gravitational radiation, Phys. Rev. D, 59, 044014-1-044014-17, (1999)
[221] Papadopoulos, P; Font, JA, Relativistic hydrodynamics on spacelike and null surfaces: formalism and computations of spherically symmetric spacetimes, Phys. Rev. D, 61, 024015-1-024015-15, (1999)
[222] Papadopoulos, P; Font, JA, Imprints of accretion on gravitational waves from black holes, Phys. Rev. D, 63, 044016-1-044016-5, (2001)
[223] Papaloizou, JCB; Pringle, JE, The dynamical stability of differently rotating discs with constant specific angular momentum, Mon. Not. R. Astron. Soc., 208, 721-750, (1984) · Zbl 0562.76106
[224] Peitz, J; Appl, S, Dissipative fluid dynamics in the 3+1 formalism, Class. Quantum Grav., 16, 979-989, (1999) · Zbl 0939.83029
[225] Penrose, R, Gravitational collapse: the role of general relativity, Riv. Nuovo Cimento, 1, 252-276, (1969)
[226] Petrich, LI; Shapiro, SL; Stark, RF; Teukolsky, SA, Accretion onto a moving black hole: a fully relativistic treatment, Astrophys. J., 336, 313-349, (1989)
[227] Petrich, LI; Shapiro, SL; Wasserman, I, Gravitational radiation from nonspherical infall into black holes. II. A catalog of “exact” waveforms, Astrophys. J. Suppl. Ser., 58, 297-320, (1985)
[228] Piran, T; Stark, RF; Centrella, JM (ed.), Numerical relativity, rotating gravitational collapse and gravitational radiation, 40-73, (1986), Cambridge, U.K.
[229] Pons, JA; Font, JA; Ibáñez, JM; Martí, JM; Miralles, JA, General relativistic hydrodynamics with special relativistic Riemann solvers, Astron. Astrophys., 339, 629-637, (1998) · Zbl 1064.76567
[230] Pons, JA; Ibáñez, JM; Miralles, JA, Hyperbolic character of the angular moment equations of radiative transfer and numerical methods, Mon. Not. R. Astron. Soc., 317, 550-562, (2000)
[231] Pons, JA; Martí, JM; Müller, E, The exact solution of the Riemann problem with non-zero tangential velocities in relativistic hydrodynamics, J. Fluid Mech., 422, 125-139, (2000) · Zbl 0994.76104
[232] Rampp, M; Janka, H-T, Spherically symmetric simulation with Boltzmann neutrino transport of core-collapse and post-bounce evolution of a 15 solar mass star, Astrophys. J., 539, l33-l36, (2000)
[233] Rampp, M; Janka, H-T, Radiation hydrodynamics with neutrinos: variable Eddington factor method for core-collapse supernova simulations, Astron. Astrophys., 396, 361-392, (2002)
[234] Rampp, M; Müller, E; Ruffert, M, Simulations of non-axisymmetric rotational core collapse, Astron. Astrophys., 332, 969-983, (1998)
[235] Rasio, FA; Shapiro, SL, Coalescing binary neutron stars, Class. Quantum Grav., 16, r1-r29, (1999)
[236] Rezzolla, L., “Relativistic Astrophysics movies at SISSA”, [Online HTML Document]: cited on 15 October 2002, http://www.sissa.it/ rezzolla/movies.html. 4.2.1, 4.2.4
[237] Rezzolla, L; Miller, JC, Relativistic radiative transfer for spherical flows, Class. Quantum Grav., 11, 1815-1832, (1994)
[238] Rezzolla, L; Zanotti, O, An improved exact Riemann solver for relativistic hydrodynamics, J. Fluid Mech., 449, 395-411, (2001) · Zbl 1009.76101
[239] Rezzolla, L; Zanotti, O; Pons, JA, An improved exact Riemann solver for multidimensional relativistic flows, J. Fluid Mech., 479, 199-219, (2003) · Zbl 1163.76371
[240] Richardson, GA; Chung, TJ, Computational relativistic astrophysics using the flow field-dependent variation theory, Astrophys. J. Suppl. Ser., 139, 539-563, (2002)
[241] Richtmyer, R.D., and Morton, K.W., Difference methods for initial value problems, (Wiley-Interscience, New York, U.S.A., 1967). 3.1.2 · Zbl 0155.47502
[242] Roe, PL, Approximate Riemann solvers, parameter vectors and difference schemes, J. Comput. Phys., 43, 357-372, (1981) · Zbl 0474.65066
[243] Roe, PL, Generalized formulation of TVD Lax-Wendroff schemes, ICASE Rep., 84, 53, (1984)
[244] Romero, JV; Ibánez, JM; Martí, JM; Miralles, JA, A new spherically symmetricgeneral relativistic hydrodynamical code, Astrophys. J., 462, 839-854, (1996)
[245] Ruffert, M; Arnett, D, Three-dimensional hydrodynamic Bondi-Hoyle accretion. 2: homogeneous medium at Mach 3 with gamma=5/3, Astrophys. J., 427, 351-376, (1994)
[246] Ruffert, M; Janka, H-T, Colliding neutron stars. gravitational waves, neutrino emission, and gamma-ray bursts, Astron. Astrophys., 338, 535-555, (1998)
[247] Sachs, RK, Gravitational waves in general relativity. VIII. waves in asymptotically at space-time, Proc. R. Soc. London, Sect.A270, 103-126, (1962) · Zbl 0101.43605
[248] Schinder, PJ; Evans, CR (ed.); Finn, LS (ed.); Hobill, DW (ed.), General relativistic implicit radiation hydrodynamics in polar sliced spacetime, 163-170, (1989), Cambridge, U.K.
[249] Schinder, PJ; Bludmann, SA; Piran, T, General relativistic implicit hydrodynamics in polar sliced spacetime, Phys. Rev. D, 37, 2722-2731, (1988)
[250] Schneider, V; Katscher, V; Rischke, DH; Waldhauser, B; Marhun, JA; Munz, C-D, New algorithms for ultra-relativistic numerical hydrodynamics, J. Comput. Phys., 105, 92-107, (1993) · Zbl 0779.76062
[251] Seidel, E; Moore, T, Gravitational radiation from realistic relativistic stars: odd-parity fluid perturbations, Phys. Rev. D, 35, 2287-2296, (1987)
[252] Seidel, E; Myra, ES; Moore, T, Gravitational radiation from type II supernovae — the effect of the high-density equation of state, Phys. Rev. D, 38, 2349-2356, (1988)
[253] Shakura, NI; Sunyaev, RA, Black holes in binary systems. observational appearance, Astron. Astrophys., 24, 337-355, (1973)
[254] Shapiro, SL, Head-on collision of neutron stars as a thought experiment, Phys. Rev. D, 58, 103002-1-103002-5, (1998)
[255] Shapiro, SL; Teukolsky, SA, Gravitational collapse to neutron stars and black holes: computer generation of spherical spacetimes, Astrophys. J., 235, 199-215, (1980)
[256] Shapiro, SL; Wasserman, I, Gravitational radiation from nonspherical infall into black holes, Astrophys. J., 260, 838-848, (1982)
[257] Shibata, M., “Homepage of Masaru Shibata: Animations”, [Online HTML Document]: cited on 13 September 2002, http://esa.c.u-tokyo.ac.jp/ shibata/anim.html. 4.3.2
[258] Shibata, M, Fully general relativistic simulation of coalescing binary neutron stars: preparatory tests, Phys. Rev. D, 60, 104052-1-104052-25, (1999)
[259] Shibata, M, Axisymmetric simulations of rotating stellar collapse in full general relativity: criteria for prompt collapse to black holes, Prog. Theor. Phys., 104, 325-358, (2000)
[260] Shibata, M, Axisymmetric general relativistic hydrodynamics: long-term evolution of neutron stars and stellar collapse to neutron stars and black holes, Phys. Rev. D, 67, 024033-1-024033-24, (2003)
[261] Shibata, M; Baumgarte, TB; Shapiro, SL, The bar-mode instability in differently rotating neutron stars: simulations in full general relativity, Astrophys. J., 542, 453-463, (2000)
[262] Shibata, M; Baumgarte, TW; Shapiro, S L, Stability and collapse of rapidly rotating, supramassive neutron stars: 3D simulations in general relativity, Phys. Rev. D, 61, 044012-1-044012-11, (2000)
[263] Shibata, M; Baumgarte, TW; Shapiro, SL, Stability of coalescing binary stars against gravitational collapse: hydrodynamical simulations, Phys. Rev. D, 58, 023002-1-023002-11, (1998)
[264] Shibata, M; Nakamura, T, Evolution of three-dimensional gravitational waves: harmonic slicing case, Phys. Rev. D, 52, 5428-5444, (1995) · Zbl 1250.83027
[265] Shibata, M; Shapiro, SL, Collapse of a rotating supermassive star to a supermassive black hole: fully relativistic simulations, Astrophys. J., 572, l39-l43, (2002)
[266] Shibata, M; Uryū, K, Simulation of merging binary neutron stars in full general relativity: γ=2 case, Phys. Rev. D, 61, 064001-1-064001-18, (2000)
[267] Shibata, M; Uryū, K, Gravitational waves from the merger of binary neutron stars in a fully general relativistic simulation, Prog. Theor. Phys., 107, 265-303, (2002) · Zbl 1024.83506
[268] Shu, CW, TVB uniformly high-order schemes for conservation laws, Math. Comput., 49, 105-121, (1987) · Zbl 0628.65075
[269] Siebel, F; Font, JA; Müller, E; Papadopoulos, P, Simulating the dynamics of relativistic stars via a light-cone approach, Phys. Rev. D, 65, 064038-1-064038-15, (2002)
[270] Siebel, F; Font, JA; Papadopoulos, P, Scalar field induced oscillations of relativistic stars and gravitational collapse, Phys. Rev. D, 65, 024021-1-024021-10, (2002)
[271] Siegler, S; Riffert, H, Smoothed particle hydrodynamics simulations of ultrarelativistic shocks with artificial viscosity, Astrophys. J., 531, 1053-1066, (2000)
[272] Sloan, J; Smarr, LL; Centrella, JM (ed.); LeBlanc, JM (ed.); Bowers, R (ed.), General relativistic magnetohydrodynamics, 52-68, (1985), Boston, U.S.A.
[273] Smarr, L.L., The structure of general relativity with a numerical illustration: the collision of two black holes, PhD Thesis, (University of Texas, Austin, TX, U.S.A., 1975). 2.1.2
[274] Sperhake, U., Papadopoulos, P., and Andersson, N., “Non-linear radial oscillations of neutron stars: Mode-coupling results”, (October, 2001), [Online Los Alamos Archive Preprint]: cited on 5 July 2002, http://xxx.arxiv.org/abs/astro-ph/0110487. Submitted to Mon. Not. R. Astron. Soc. 4.3.1
[275] Stark, RF; Evans, CR (ed.); Finn, LS (ed.); Hobill, DW (ed.), Non-axisymmetric rotating gravitational collapse and gravitational radiation, 281-296, (1989), Cambridge, U.K.
[276] Stark, RF; Piran, T, Gravitational-wave emission from rotating gravitational collapse, Phys. Rev. Lett., 55, 891-894, (1985)
[277] Stark, RF; Piran, T, A general relativistic code for rotating axisymmetric configurations and gravitational radiation: numerical methods and tests, Comput. Phys. Rep., 5, 221-264, (1987)
[278] Stergioulas, N., “Rotating Stars in Relativity”, Living Rev. Relativity, 1, lrr-2002-3, (June, 1998), [Online HTML Document]: cited on 20 June 2003, http://www.livingreviews.org/lrr-2003-3. 4.3.1 · Zbl 1023.83014
[279] Stergioulas, N; Font, JA, Nonlinear \(r\)-modes in rapidly rotating relativistic stars, Phys. Rev. Lett., 86, 1148-1151, (2001)
[280] Swesty, D; Lattimer, JM; Myra, ES, The role of the equation of state in the ‘prompt’ phase of type II supernovae, Astrophys. J., 425, 195-204, (1994)
[281] Tadmor, E., “Eitan Tadmor Home Page”, [Online HTML Document]: cited on 13 September 2002, http://www.math.ucla.edu/ tadmor. 3.1.3
[282] Tanaka, Y; Nandra, K; Fabian, AC; Inoue, H; Otani, C; Dotani, T; Hayashida, K; Iwasawa, K; Kii, T; Kunieda, H; Makino, F; Matsuoka, M, Gravitationally redshifted emission implying an accretion disk and massive black-hole in the active galaxy MCG-6-30-15, Nature, 375, 659-661, (1995)
[283] Taniguchi, K; Gourgoulhon, E, Equilibrium sequences of synchronized and irrotational binary systems composed of different mass stars in Newtonian gravity, Phys. Rev. D, 65, 044027-1-044027-16, (2002)
[284] Taniguchi, K; Gourgoulhon, E; Bonazzola, S, Quasiequilibrium sequences of synchronized and irrotational binary neutron stars in general relativity. II. Newtonian limits, Phys. Rev. D, 64, 064012-1-064012-19, (2001)
[285] Teukolsky, SA, Rotating black holes: separable wave equations for gravitational and electromagnetic perturbations, Phys. Rev. Lett., 29, 1114-1118, (1972)
[286] Thorne, K; Kolb, EW (ed.); Peccei, R (ed.), Gravitational waves, 398-425, (1995), Singapore
[287] Toro, E.F., Riemann solvers and numerical methods for fluid dynamics — a practical introduction, (Springer-Verlag, Berlin, Germany, 1997). 3, 3.1, 3.1.2, 3.1.2, 3.1.3, 3.1.4 · Zbl 0888.76001
[288] Klis, M, Kilohertz quasi-periodic oscillations in low-mass X-ray binaries, The Many Faces of Neutron Stars: Proceedings of the NATO Advanced Study Institute, Lipary, Italy, September 30 — October 11, 1996, 515, 337-368, (1998)
[289] Leer, BJ, Towards the ultimate conservative difference scheme. III. upstream centered finite difference schemes for ideal compressible flows, J. Comput. Phys., 23, 263-275, (1977) · Zbl 0339.76039
[290] Leer, BJ, Towards the ultimate conservative difference scheme. V. A second order sequel to godunov’s method, J. Comput. Phys., 32, 101-136, (1979) · Zbl 1364.65223
[291] van Putten, M.H.P.M., “Uniqueness in MHD in divergence form: right nullvectors and well-posedness”, (April, 1998), [Online Los Alamos Archive Preprint]: cited on 1 May 1998, http://xxx.arxiv.org/abs/astro-ph/9804139. 2.3 · Zbl 1060.76134
[292] Putten, MHPM; Levinson, A, Detecting energy emissions from a rotating black hole, Science, 295, 1874-1877, (2002)
[293] Riper, KA, General relativistic hydrodynamics and the adiabatic collapse of stellar cores, Astrophys. J., 232, 558-571, (1979)
[294] Riper, KA, Effects of nuclear equation of state on general relativistic stellar core collapse models, Astrophys. J., 326, 235-240, (1988)
[295] Neumann, J; Richtmyer, R D, A method for the numerical calculation of hydrodynamic shocks, J. Appl. Phys., 21, 232-247, (1950) · Zbl 0037.12002
[296] Washington University Gravity Group, “Neutron Star Grand Challenge”, [Online HTML Document]: cited on 13 September 2002, http://wugrav.wustl.edu/research/projects/final_report/nasafinal3.html. 3.3.2
[297] Wen, L; Panaitescu, A; Laguna, P, A shock-patching code for ultrarelativistic fluid flows, Astrophys. J., 486, 919-927, (1997)
[298] Wilson, J R; Centrella, JM (ed.); LeBlanc, JM (ed.); Wilson, JR (ed.), Supernovae and post-collapse behaviour, 422-434, (1985), Boston, U.S.A.
[299] Wilson, JR, A numerical study of gravitational stellar collapse, Astrophys. J., 163, 209-219, (1971)
[300] Wilson, JR, Numerical study of fluid flow in a Kerr space, Astrophys. J., 173, 431-438, (1972)
[301] Wilson, JR; Smarr, LL (ed.), A numerical method for relativistic hydrodynamics, 423-445, (1979), Cambridge, U.K.
[302] Wilson, JR; Mathews, GJ; Evans, CR (ed.); Finn, LS (ed.); Hobill, DW (ed.), Relativistic hydrodynamics, 306-314, (1989), Cambridge, U.K.
[303] Wilson, JR; Mathews, GJ, Instabilities in close neutron star binaries, Phys. Rev. Lett., 75, 4161-4164, (1995)
[304] Wilson, JR; Mathews, GJ; Marronetti, P, Relativisitic numerical model for close neutron star binaries, Phys. Rev. D, 54, 1317-1331, (1996)
[305] Winicour, J., “Characteristic evolution and matching”, Living Rev. Relativity, 5, lrr-2001-3, (May, 1998), [Online Journal Article]: cited on 17 April 2003, http://www.livingreviews.org/lrr-2001-3. 2, 1, 4.1.2 · Zbl 1316.83015
[306] Woodward, P; Colella, P, The numerical simulation of two-dimensional fluid flow with strong shocks, J. Comput. Phys., 54, 115-173, (1984) · Zbl 0573.76057
[307] Woosley, SE, Gamma-ray bursts from stellar mass accretion disks around black holes, Astrophys. J., 405, 273-277, (1993)
[308] Woosley, SE; Pinto, PA; Ensman, L, Supernova 1987 A — six weeks later, Astrophys. J., 324, 466-489, (1988)
[309] Yamada, S, An implicit Lagrangian code for spherically symmetric general relativistic hydrodynamics with an approximate Riemann solver, Astrophys. J., 475, 720-739, (1997)
[310] Yamada, S; Sato, K, Numerical study of rotating core collapse in supernova explosions, Astrophys. J., 434, 268-276, (1994)
[311] Yee, HC, Construction of explicit and implicit symmetric TVD schemes and their applications, J. Comput. Phys., 68, 151-179, (1987) · Zbl 0621.76026
[312] Yee, H.C., “A class of high-resolution explicit and implicit shock-capturing methods”, in Computational Fluid Dynamics, volume 1989-04 of VKI Lecture Series, (von Karman Institute for Fluid Dynamics, Rhode-Saint-Genèse, 1989). 3.1.3
[313] Yokosawa, M, Energy and angular momentum transport in magnetohydrodynamical accretion onto a rotating black hole, Publ. Astron. Soc. Japan, 45, 207-218, (1993)
[314] Yokosawa, M, Structure and dynamics of an accretion disk around a black hole, Publ. Astron. Soc. Japan, 47, 605-615, (1995)
[315] York, J; Smarr, LL (ed.), Kinematics and dynamics of general relativity, (1979), Cambridge, U.K. · Zbl 0418.58016
[316] Zampieri, L; Miller, JC; Turolla, R, Time-dependent analysis of spherical accretion on to black holes, Mon. Not. R. Astron. Soc., 281, 1183-1196, (1996)
[317] Zanotti, O., Rezzolla, and Font, J.A., “Quasi-periodic accretion and gravitational waves from oscillating “toroidal neutron stars“ around a Schwarzschild black hole”, (October, 2002), [Online Los Alamos Archive Preprint]: cited on 15 October 2002, http://xxx.arxiv.org/abs/gr-qc/0210018. Submitted to MNRAS. 4.2.4
[318] Zienkiewicz, O.C., The finite element method, (McGraw-Hill, London, U.K., 1977). 3.2.4 · Zbl 0435.73072
[319] Zwerger, T; Müller, E, Dynamics and gravitational wave signature of axisymmetric rotational core collapse, Astron. Astrophys., 320, 209-227, (1997)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.