×

zbMATH — the first resource for mathematics

Mordell-Weil lattice via string junctions. (English) Zbl 1068.81588
Summary: We analyze the structure of singularities, Mordell-Weil lattices and torsions of a rational elliptic surface using string junctions in the background of 12 7-branes. The classification of the Mordell-Weil lattices due to Oguiso-Shioda is reproduced in terms of the junction lattice. In this analysis an important role played by the global structure of the surface is observed. It is then found that the torsions in the Mordell-Weil group are generated by the fraction of loop junctions which represent the imaginary roots of the loop algebra \(\hat E_9\). From the structure of the Mordell-Weil lattice we find 7-brane configurations which support non-BPS junctions carrying conserved Abelian charges.

MSC:
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
14J28 \(K3\) surfaces and Enriques surfaces
32J81 Applications of compact analytic spaces to the sciences
83E30 String and superstring theories in gravitational theory
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Y. Yamada, S.-K. Yang, Affine 7-brane backgrounds and five-dimensional EN theories on S1, Nucl. Phys. B, to be published; hep-th/9907134.
[2] A. Sen, B. Zwiebach, Stable non-BPS states in F-theory, hep-th/9907164. · Zbl 0959.81045
[3] Vafa, C., Nucl. phys. B, 469, 403, (1996)
[4] Sen, A., Nucl. phys. B, 475, 562, (1996)
[5] Morrison, D.R.; Vafa, C., Nucl. phys. B, 473, 74, (1996)
[6] Morrison, D.R.; Vafa, C., Nucl. phys. B, 476, 437, (1996)
[7] O. DeWolfe, T. Hauer, A. Iqbal, B. Zwiebach, Uncovering infinite symmetries on [p,q] 7-branes: Kac-Moody algebras and beyond, hep-th/9812209. · Zbl 0967.81052
[8] Friedman, R.; Morgan, J.; Witten, E., Comm. math. phys., 187, 679, (1997)
[9] Aspinwall, P.S.; Morrison, D.R., Nucl. phys. B, 503, 533, (1997)
[10] Aspinwall, P.S., J. high energy phys., 9804, 019, (1998)
[11] Aspinwall, P.S.; Morrison, D.R., J. high energy phys., 9807, 012, (1998)
[12] Shioda, T., Comment. math. univ. st. Pauli., 39, 211, (1990)
[13] Oguiso, K.; Shioda, T., Comment. math. univ. st. Pauli., 40, 83, (1991)
[14] Shioda, T., Proc. jap. acad. A, 68, 251, (1992)
[15] J.H. Silverman, J. Tate, Rational points on elliptic curves, Undergraduate Texts in Mathematics (Springer, Berlin, 1992). · Zbl 0752.14034
[16] Kodaira, K., Ann. math., 77, 563, (1963)
[17] Kodaira, K., Ann. math., 78, 1, (1963)
[18] Seiberg, N.; Witten, E., Nucl. phys. B, 431, 484, (1994)
[19] Minahan, J.A.; Nemeschansky, D., Nucl. phys. B, 482, 142, (1996)
[20] Minahan, J.A.; Nemeschansky, D., Nucl. phys. B, 489, 24, (1997)
[21] Noguchi, M.; Terashima, S.; Yang, S.-K., Nucl. phys. B, 556, 115, (1999)
[22] Minahan, J.A.; Nemeschansky, D.; Warner, N.P., Nucl. phys. B, 508, 64, (1997)
[23] DeWolfe, O.; Zwiebach, B., Nucl. phys. B, 541, 509, (1999)
[24] O. DeWolfe, T. Hauer, A. Iqbal, B. Zwiebach, Uncovering the symmetries on [p,q] 7-branes: Beyond the Kodaira classification, hep-th/9812028. · Zbl 0967.81051
[25] Gaberdiel, M.R.; Hauer, T.; Zwiebach, B., Nucl. phys. B, 525, 117, (1998)
[26] Miranda, R., Math. ann., 255, 379, (1981)
[27] Cox, D.; Zucker, S., Invent. math., 53, 1, (1979)
[28] Sen, A., J. high energy phys., 9806, 007, (1998)
[29] Sen, A., J. high energy phys., 9808, 010, (1998)
[30] Mikhailov, A.; Nekrasov, N.; Sethi, S., Nucl. phys. B, 531, 345, (1998)
[31] DeWolfe, O.; Hauer, T.; Iqbal, A.; Zwiebach, B., Nucl. phys. B, 534, 261, (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.