Berezansky, Leonid; Braverman, Elena On impulsive Beverton-holt difference equations and their applications. (English) Zbl 1068.39005 J. Difference Equ. Appl. 10, No. 9, 851-868 (2004). The authors consider asymptotic properties of the impulsive Beverton-Holt difference equation \[ x_{n+1}=\frac{\alpha _nx_n}{1+B_nx_n},\;x_{pk}^{+}=b_kx_{pk}-d_k,\;n,k=1,2, \ldots , \] where \(p\) is a fixed positive integer. The results obtained are applied to an impulsive logistic equation with non-constant coefficients \[ x^{\prime }(t)=x(t)(r(t)-a(t)x(t)),\;x(\tau _k)=b_kx(\tau _k^{-})-d_k,\;\lim_{k\rightarrow \infty }\tau _k=\infty . \] In particular, sufficient extinction and non-extinction conditions are obtained for both equations. Reviewer: Wan-Tong Li (Lanzhou) Cited in 44 Documents MSC: 39A11 Stability of difference equations (MSC2000) 34K45 Functional-differential equations with impulses 92B99 Mathematical biology in general 39A20 Multiplicative and other generalized difference equations, e.g., of Lyness type Keywords:Beverton-Holt rational difference equation; impulsive harvesting; asymptotic behavior; logistic equation PDF BibTeX XML Cite \textit{L. Berezansky} and \textit{E. Braverman}, J. Difference Equ. Appl. 10, No. 9, 851--868 (2004; Zbl 1068.39005) Full Text: DOI References: [1] Beverton RJ, Sea Fisheries; Their Investigation in the United Kingdom pp 372– (1956) [2] Brauer F, Mathematical Models in Population Biology and Epidemiology (2001) · Zbl 0967.92015 [3] Hasting A, Population Biology (1997) [4] DOI: 10.1017/CBO9780511608520 · Zbl 1060.92058 · doi:10.1017/CBO9780511608520 [5] Kuang Y, Delay differential equations with applications in population dynamics (1993) · Zbl 0777.34002 [6] DOI: 10.1016/S1468-1218(02)00084-6 · Zbl 1011.92052 · doi:10.1016/S1468-1218(02)00084-6 [7] Györi I, Oscillation Theory of Delay Differential Equations (1991) [8] Brauer F, Dynam. Contin. Discrete Impuls. Systems 5 pp 107– (1999) [9] Grove EA, Comm. Appl. Nonlinear Anal. 8 pp 1– (2001) [10] DOI: 10.1201/9781420035384 · doi:10.1201/9781420035384 [11] Berezansky L, Math. Comput. Model. [12] DOI: 10.1016/j.cam.2003.06.004 · Zbl 1045.34039 · doi:10.1016/j.cam.2003.06.004 [13] DOI: 10.1016/S0898-1221(02)00231-6 · Zbl 1045.34041 · doi:10.1016/S0898-1221(02)00231-6 [14] Verhulst PF, Corr. Math. Phys. 10 pp 113– (1838) [15] Verhulst PF, Mém. Acad. Roy, Brussels 18 pp 1– (1845) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.