# zbMATH — the first resource for mathematics

Convergence to equilibrium for the Cahn-Hilliard equation with dynamic boundary conditions. (English) Zbl 1068.35018
The paper contains the proof of the result announced in [Gakuto Int. Series; Math. Sci. Appl. 20, 382–390 (2004; Zbl 1068.35052)]. The initial boundary value problem is considered \begin{aligned} &\frac{\partial u}{\partial t}=\Delta\mu,\quad \mu=-\Delta u-u+u^3\quad t>0,\;x\in\Omega\\ &\frac{\partial \mu}{\partial \nu}=0,\quad \frac 1{\Gamma_s}\frac{\partial u}{\partial t}=\sigma_s\Delta_{\|}\,u-\frac{\partial u}{\partial \nu}+h_s-g_s u\quad t>0,\;x\in\partial\Omega\tag{1}\\ &u(x,0)=u_0(x), \quad x\in\Omega \end{aligned} where $$\Omega$$ is a bounded domain from $$\mathbb R^n$$, $$n\leq 3$$, $$\Gamma_s>0,\;\sigma_s>0,\;g_s>0$$, $$h_s$$ are given constants, $$\Delta_{\|}$$ is the tangential Laplacian operator, $$\nu$$ is the outward normal to $$\partial\Omega$$.
It is proved that $$\lim_{t\to\infty}\| u(\cdot,t)-\psi\|_{H^3(\Omega)}=0$$ where $$\psi$$ is an equilibrium to the problem (1) \begin{aligned} & -\Delta \psi-\psi+\psi^3=\text{const}\quad\;x\in\Omega\\ &\sigma_s\Delta_{\|}\,\psi-\frac{\partial \psi}{\partial \nu}+h_s-g_s \psi=0\quad t>0,\;x\in\partial\Omega\\ &\int_{\Omega}\psi(x)\,dx=\int_{\Omega}u_0(x)\,dx. \end{aligned}

##### MSC:
 35B40 Asymptotic behavior of solutions to PDEs 37L30 Infinite-dimensional dissipative dynamical systems–attractors and their dimensions, Lyapunov exponents 35K60 Nonlinear initial, boundary and initial-boundary value problems for linear parabolic equations 82C24 Interface problems; diffusion-limited aggregation in time-dependent statistical mechanics 74N20 Dynamics of phase boundaries in solids 35K35 Initial-boundary value problems for higher-order parabolic equations
##### Keywords:
time asymptotic behavior; Simon-Lojasiewicz inequality
Full Text:
##### References:
  Cahn, J.W.; Hilliard, E., Free energy of a nonuniform system, I, interfacial free energy, J. chem. phys., 28, 258-367, (1958)  Dafermos, C., Asymptotic behavior of solutions of evolution equations, (), 103-124  Elliott, C.M.; Zheng, S., On the cahn – hilliard equation, Arch. rational mech. anal., 96, 339-357, (1986) · Zbl 0624.35048  Escher, J., Quasilinear parabolic systems with dynamical boundary conditions, Comm. partial differential equations, 18, 7&8, 1309-1364, (1993) · Zbl 0816.35059  Escher, J., On quasilinear fully parabolic boundary value problems, Differential integral equations, 7, 5, 1325-1343, (1994) · Zbl 0815.35049  Escher, J., On the qualitative behavior of some semilinear parabolic problems, Differential integral equations, 8, 247-267, (1995) · Zbl 0814.35053  Grinfeld, M.; Novick-Cohen, A., Counting stationary solutions of the cahn – hilliard equation by transversality arguments, Proc. roy. soc. Edinburgh (section A), 125, 2, 351-370, (1995) · Zbl 0828.34007  Henry, D., Geometric theory of semilinear parabolic equations, Lectures notes in mathematics, Vol. 840, (1981), Springer Berlin · Zbl 0456.35001  Hintermann, T., Evolution equations with dynamic boundary conditions, Proc. roy. soc. Edinburgh (section A), 113, 43-65, (1989) · Zbl 0699.35045  Huang, S.Z.; Tak$$ác̆$$, P., Convergence in gradient-like systems which are asymptotically autonomous and analytic, Nonlinear anal., 46, 675-698, (2001) · Zbl 1002.35022  Jendoubi, M.A., A simple unified approach to some convergence theorem of L. Simon, J. functional anal., 153, 187-202, (1998) · Zbl 0895.35012  Jendoubi, M.A., Convergence of global and bounded solutions of the wave equation with linear dissipation and analytic nonlinearity, J. differential equations, 144, 302-312, (1998) · Zbl 0912.35028  Kenzler, R.; Eurich, F.; Maass, P.; Rinn, B.; Schropp, J.; Bohl, E.; Dieterich, W., Phase separation in confined geometriessolving the cahn – hilliard equation with generic boundary conditions, Comput. phys. comm., 133, 139-157, (2001) · Zbl 0985.65114  S. Lojasiewicz, Une propri$$é$$t$$é$$ topologique des sous-ensembles analytiques re$$é$$s, Colloque Internationaux du C.N.R.S. #117, Les equations aux deriv$$é$$es parielles, 1963, pp. 87-89.  Lojasiewicz, S., Sur la geometrie semi- et sous-analytique, Ann. inst. Fourier (Grenoble), 43, 1575-1595, (1963) · Zbl 0803.32002  Lojasiewicz, S., Ensemble semi-analytic, (1965), IHES Bures-sur-Yvette  Matano, H., Convergence of solutions of one-dimensional semilinear parabolic equations, J. math. Kyoto univ., 18-2, 221-227, (1978) · Zbl 0387.35008  Nicolaenko, B.; Scheurer, B.; Temam, R., Some global dynamical properties of a class of pattern formation equations, Comm. partial differential equations, 14, 245-297, (1989) · Zbl 0691.35019  Nirenberg, L., Topics in nonlinear functional analysis, (1974), Courant Institute of Mathematical Science New York · Zbl 0286.47037  Novick-Cohen, A.; Peletier, A., Steady states of the one-dimensional cahn – hilliard equation, Proc. roy. soc. Edinburgh (section A), 123, 6, 1071-1098, (1993) · Zbl 0818.35127  Novick-Cohen, A.; Segel, L.A., Nonlinear aspects of the cahn – hilliard equation, Physica D, 10, 277-298, (1984)  Polac̆ik, P.; Pybakowski, K.P., Nonconvergent bounded trajectories in semilinear heat equations, J. differential equations, 124, 472-494, (1996) · Zbl 0845.35054  Polac̆ik, P.; Simondon, F., Nonconvergent bounded solutions of semilinear heat equations on arbitrary domains, J. differential equations, 186, 586-610, (2002) · Zbl 1024.35046  Prüss, J.; Racke, R.; Zheng, S., Maximal regularity and asymptotic behavior of solutions for the cahn – hilliard equation with dynamic boundary condition, Konstanzer schrift. math. inform., 189, 1-21, (2003)  Racke, R.; Zheng, S., The cahn – hilliard equation with dynamical boundary conditions, Adv. differential equations, 8, 1, 83-110, (2003) · Zbl 1035.35050  Rybka, P.; Hoffmann, K.H., Convergence of solutions to cahn – hilliard equation, Comm. partial differential equations, 24, 5&6, 1055-1077, (1999) · Zbl 0936.35032  Sell, G.; You, Y., Dynamics of evolutionary equations, (2001), Springer New York  Simon, L., Asymptotics for a class of nonlinear evolution equation with applications to geometric problems, Ann. math., 118, 525-571, (1983) · Zbl 0549.35071  Temam, R., Infinite-dimensional dynamical systems in mechanics and physics, Applied mathematical science, Vol. 68, (1988), Springer New York · Zbl 0662.35001  T.I. Zelenyak, Stabilization of solutions of boundary value problems for a second-order parabolic equation with one space variable, Differentsial’nye Uravneniya (1968) 17-22. · Zbl 0232.35053  Zheng, S., Asymptotic behavior of solutions to the cahn – hilliard equation, Appl. anal., 23, 165-184, (1986) · Zbl 0582.34070
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.