zbMATH — the first resource for mathematics

Metastability in Glauber dynamics in the low-temperature limit: Beyond exponential asymptotics. (English) Zbl 1067.82041
Summary: We consider Glauber dynamics of classical spin systems of Ising type in the limit when the temperature tends to zero in finite volume. We show that information on the structure of the most profound minima and the connecting saddle points of the Hamiltonian can be translated into sharp estimates on the distribution of the times of metastable transitions between such minima as well as the low lying spectrum of the generator. In contrast with earlier results on such problems, where only the asymptotics of the exponential rates is obtained, we compute the precise pre-factors up to multiplicative errors that tend to 1 as \(T\downarrow0\). As an example we treat the nearest neighbor Ising model on the 2 and 3 dimensional square lattice. Our results improve considerably earlier estimates obtained by Neves-Schonmann, Ben Arous-Cerf, and Alonso-Cerf. Our results employ the methods introduced by Bovier, Eckhoff, Gayrard, and Klein.

82C20 Dynamic lattice systems (kinetic Ising, etc.) and systems on graphs in time-dependent statistical mechanics
60J35 Transition functions, generators and resolvents
60K35 Interacting random processes; statistical mechanics type models; percolation theory
82C22 Interacting particle systems in time-dependent statistical mechanics
Full Text: DOI arXiv