×

zbMATH — the first resource for mathematics

A monolithic approach to fluid-structure interaction using space-time finite elements. (English) Zbl 1067.74575
Summary: The paper presents a simultaneous solution procedure for fluid-structure interaction problems. The structural motion is described by geometrically nonlinear elastodynamics. The fluid is modeled by the incompressible Navier-Stokes equations. The space-time finite element method is applied to both continua leading to an almost uniform discretization in which velocity variables are used for fluid and structure. In order to enforce momentum conservation and geometric continuity at the interface, a weighted residual formulation of coupling conditions is introduced. The discretized model equations for fluid, structure and coupling conditions are formulated in a single equation system. The nonlinear system and the fluid mesh movement are solved in a single iteration loop. Two-dimensional examples of membrane flutter and vortex excited plate vibrations demonstrate the efficiency of the methodology.

MSC:
74S05 Finite element methods applied to problems in solid mechanics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76M10 Finite element methods applied to problems in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
PDF BibTeX Cite
Full Text: DOI
References:
[1] Simiu, E.; Scanlan, R.H., Wind effects on structures. fundamentals and applications to design, (1996), John Wiley & Sons New York
[2] Taylor, C.A.; Hughes, T.J.R.; Zarins, C.K., Finite element modeling of blood flow in arteries, Comput. methods appl. mech. engrg., 158, 155-196, (1998) · Zbl 0953.76058
[3] J.R. Cebral, R. Löhner, O. Soto, P.J. Yim, Finite element modeling of blood flow in healthy and diseased arteries, in: H.A. Mang, F.G. Rammerstorfer, J. Eberhardsteiner (Eds.), Proceedings of the Fifth World Congress on Computational Mechanics, Vienna, 2002
[4] Felippa, C.A.; Park, K.-C., Staggered transient analysis procedures for coupled-field mechanical systems: formulation, Comput. methods appl. mech. engrg., 24, 61-111, (1980) · Zbl 0453.73091
[5] Löhner, R.; Yang, C.; Cebral, J.; Baum, J.D.; Luo, H.; Pelessone, D.; Charman, C., Fluid – structure interaction using a loose coupling algorithm and adaptive unstructured grids, () · Zbl 0875.73165
[6] Masud, A.; Hughes, T.J.R., A space – time Galerkin/least-squares finite element formulation of the navier – stokes equations for moving domain problems, Comput. methods appl. mech. engrg., 146, 91-126, (1997) · Zbl 0899.76259
[7] W.A. Wall, E. Ramm, Fluid – structure interaction based upon a stabilized (ALE) finite element method, in: S. Idelsohn, E. Oñate, E. Dvorkin (Eds.), Computational Mechanics–New Trends and Applications (Proceedings of WCCM IV), CIMNE, Barcelona, 1998
[8] Farhat, C.; Lesoinne, M., Two efficient staggered algorithms for the serial and parallel solution of three-dimensional nonlinear transient aeroelastic problems, Comput. methods appl. mech. engrg., 182, 499-515, (2000) · Zbl 0991.74069
[9] Kalro, V.; Tezduyar, T.E., A parallel 3D computational method for fluid – structure interactions in parachute systems, Comput. methods appl. mech. engrg., 190, 321-332, (2000) · Zbl 0993.76044
[10] Le Tallec, P.; Mouro, J., Fluid structure interaction with large structural displacements, Comput. methods appl. mech. engrg., 190, 3039-3068, (2001) · Zbl 1001.74040
[11] E. Ramm, W.A. Wall, Interaction of fluids and thin structures, in: Proceedings of the 2nd European Conference on Computational Mechanics, Cracow, 2001
[12] Rugonyi, S.; Bathe, K.-J., On finite element analysis of fluid flows fully coupled with structural interactions, Comput. model. engrg. sci., 2, 2, 195-212, (2001)
[13] O.O. Bendiksen, A new approach to computational aeroelasticity, AIAA Paper 91-0939-CP, 1991
[14] J.J. Alonso, A. Jameson, Fully-implicit time-marching aeroelastic solutions, AIAA Paper 94-0056, 1994
[15] Grohmann, B.A.; Dornberger, R.; Dinkler, D., Time-discontinuous stabilized space – time finite elements for aeroelasticity, Fluid – structure interaction, flow-induced vibrations and noise, vol. 3 (AD53-3), (1997), ASME
[16] Blom, F.J., A monolithical fluid – structure interaction algorithm applied to the piston problem, Comput. methods appl. mech. engrg., 167, 369-391, (1998) · Zbl 0948.76046
[17] Rifai, S.M.; Johan, Z.; Wang, W.-P.; Grisval, J.-P.; Hughes, T.J.R.; Ferencz, R.M., Multiphysics simulation of flow-induced vibrations and aeroelasticity on parallel computing platforms, Comput. methods appl. mech. engrg., 174, 393-417, (1999) · Zbl 0962.74068
[18] B. Hübner, E. Walhorn, D. Dinkler, Strongly coupled analysis of fluid – structure interaction using space – time finite elements, in: Proceedings of the 2nd European Conference on Computational Mechanics, Cracow, 2001
[19] Heil, M.; White, J.P., Airway closure: surface-tension-driven non-axisymmetric instabilities of liquid-lined elastic rings, J. fluid mech., 462, 79-109, (2002) · Zbl 1156.74320
[20] Hughes, T.J.R.; Hulbert, G.M., Space – time finite element methods for elastodynamics: formulations and error estimates, Comput. methods appl. mech. engrg., 66, 339-363, (1988) · Zbl 0616.73063
[21] Brooks, A.N.; Hughes, T.J.R., Streamline upwind/petrov – galerkin formulations for convection dominated flows with particular emphasis on the incompressible navier – stokes equations, Comput. methods appl. mech. engrg., 32, 199-259, (1982) · Zbl 0497.76041
[22] Hughes, T.J.R.; Franca, L.P.; Hulbert, G.M., A new finite element formulation for computational fluid dynamics: VIII. the Galerkin/least-squares method for advective-diffusive equations, Comput. methods appl. mech. engrg., 73, 173-189, (1989) · Zbl 0697.76100
[23] Tezduyar, T.E.; Behr, M.; Liou, J., A new strategy for finite element computations involving moving boundaries and interfaces–the deforming-spatial-domain/space – time procedure: I. the concept and the preliminary numerical tests, Comput. methods appl. mech. engrg., 94, 339-351, (1992) · Zbl 0745.76044
[24] Hansbo, P., The characteristic streamline diffusion method for the time-dependent incompressible navier – stokes equations, Comput. methods appl. mech. engrg., 99, 171-186, (1992) · Zbl 0825.76423
[25] Behr, M.; Tezduyar, T.E., Finite element solution strategies for large-scale flow simulations, Comput. methods appl. mech. engrg., 112, 3-24, (1994) · Zbl 0846.76041
[26] Johnson, A.A.; Tezduyar, T.E., Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces, Comput. methods appl. mech. engrg., 119, 73-94, (1994) · Zbl 0848.76036
[27] Wilcox, D.C., Turbulence modeling for CFD, (1998), DCW Industries La Cañada
[28] Knippers, J.; Harbord, R., A mixed hybrid FE formulation for solution of elasto-viscoplastic problems. part II: dynamic loading conditions and bending problems, Comput. mech., 13, 231-240, (1994) · Zbl 0799.73070
[29] Lesoinne, M.; Farhat, C., Geometric conservation laws for flow problems with moving boundaries and deformable meshes, and their impact on aeroelastic computations, Comput. methods appl. mech. engrg., 134, 71-90, (1996) · Zbl 0896.76044
[30] Hulbert, G.M., Time finite element methods for structural dynamics, Int. J. numer. methods engrg., 33, 307-331, (1992) · Zbl 0760.73064
[31] Johnson, C., Discontinuous Galerkin finite element methods for second order hyperbolic problems, Comput. methods appl. mech. engrg., 107, 117-129, (1993) · Zbl 0787.65070
[32] Pian, T.H.H.; Tong, P., Basis of finite element methods for solid continua, Int. J. numer. methods engrg., 1, 3-28, (1969) · Zbl 0252.73052
[33] Xue, W.-M.; Karlovitz, L.A.; Atluri, S.N., On the existence and stability conditions for mixed-hybrid finite element solutions based on Reissner’s variational principle, Int. J. solids struct., 21, 1, 97-116, (1985) · Zbl 0597.73072
[34] Simo, J.C.; Taylor, R.L.; Pister, K.S., Variational and projection methods for the volume constraint in finite deformation elasto-plasticity, Comput. methods appl. mech. engrg., 51, 177-208, (1985) · Zbl 0554.73036
[35] Farhat, C.; Lesoinne, M.; Le Tallec, P., Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: momentum and energy conservation, optimal discretization and application to aeroelasticity, Comput. methods appl. mech. engrg., 157, 95-114, (1998) · Zbl 0951.74015
[36] Lynch, D.R., Unified approach to simulation on deforming elements with application to phase change problems, J. comput. phys., 47, 387-411, (1982) · Zbl 0486.65063
[37] Ferziger, J.H.; Perić, M., Computational methods for fluid dynamics, (2002), Springer Berlin · Zbl 0869.76003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.