×

zbMATH — the first resource for mathematics

Theoretical and computational issues in modelling material failure in strong discontinuity scenarios. (English) Zbl 1067.74505
Summary: The paper deals with several aspects related to numerical modelling of material failure in strong discontinuity settings: (a) the onset and development of local material failure in terms of continuum constitutive models equipped with strain softening. Closed forms formulas for the solutions of the discontinuous material bifurcation problem are given for a class of those models; (b) finite elements with embedded discontinuities: nodal and elemental enrichments families are formulated in the continuum strong discontinuity approach; (c) instability treatment: a discrete viscous perturbation method at the failure surfaces is presented as a way to substantially improve the robustness of the numerical simulations.

MSC:
74A45 Theories of fracture and damage
74S05 Finite element methods applied to problems in solid mechanics
Software:
COMET
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] J. Alfaiate, L.J. Sluys, Analysis of a compression test on concrete using strong embedded discontinuities, in: F.G. Eberhardsteiner, J. Mang, H.A. Rammerstorfer (Eds.), Proceedings of the Fifth World Congress on Computational Mechanics (WCCM V), Vienna University of Technology, Austria, ISBN 3-9501554-0-6, July 7-12, 2002. Available from <http://wccm.tuwien.ac.at>
[2] F. Armero, K. Garikipati, Recent advances in the analysis and numerical simulation of strain localization in inelastic solids, in: D.R.J. Owen, E. Onate, E. Hinton (Eds.), Computational Plasticity. Fundamentals and Applications, pp. 547-561, 1995
[3] Armero, F.; Garikipati, K., An analysis of strong discontinuities in multiplicative finite strain plasticity and their relation with the numerical simulation of strain localization in solids, Internat. J. solids and structures, 33, 20-22, 2863-2885, (1996) · Zbl 0924.73084
[4] Bazant, Z.P., Mechanics of distributed cracking, Appl. mech. rev, 39, 5, 675-701, (1986)
[5] Bazant, Z.P.; Cedolin, L., Stability of structures, (1991), Oxford University Press · Zbl 0744.73001
[6] Bazant, Z.P.; Planas, J., Fracture and size effect in concrete and other quasibrittle materials, (1998), CRC Press
[7] Borja, R.I., A finite element model for strain localization analysis of strongly discontinuous fields based on standard Galerkin approximation, Comput. methods appl. mech. engrg, 190, 1529-1549, (2000) · Zbl 1003.74074
[8] M. Cervera, C. Agelet de Saracibar, M. Chiumenti, COMET: a multipurpose finite element code for numerical analysis in solid mechanics, Technical Report, Technical University of Catalonia (UPC), 2001 · Zbl 1210.74170
[9] Crisfield, M.A., Non-linear finite element analysis of solids and structures, (1991), John Wiley England, vol. I · Zbl 0809.73005
[10] Dvorkin, E.N.; Cuitino, A.M.; Gioia, G., Finite elements with displacement embedded localization lines insensitive to mesh size and distortions, Internat. J. numer. methods engrg, 30, 541-564, (1990) · Zbl 0729.73209
[11] A. Hillerborg, Numerical methods to simulate softening and fracture of concrete, in: G.C. Sih, A. Di Tomaso (Eds.), Fracture Mechanics of Concrete: Structural Application and Numerical Calculation, 1985, pp. 141-170
[12] Jirasek, M., Comparative study on finite elements with embedded discontinuities, Comput. methods appl. mech. engrg, 188, 307-330, (2000) · Zbl 1166.74427
[13] M. Jirasek, T. Belytschko, Computational resolution of strong discontinuities, in: H.A. Mang, F.G. Rammerstorfer, J. Eberhardsteiner (Eds.), Proceedings of the Fifth World Congress on Computational Mechanics (WCCM V), Vienna University of Technology, Austria, ISBN 3-9501554-0-6, July 7-12, 2002. Available from <http://wccm.tuwien.ac.at>
[14] Hutchinson, J.W., Fundamentals of the phenomenological theory of nonlinear fracture mechanics, J. appl. mech, 50, 1042-1051, (1983)
[15] Li, S.; Liu, W.K., Numerical simulation of strain localization in inelastic solids using mesh-free methods, Internat. J. numer. methods engrg, 1, 48, 1285-1309, (2000) · Zbl 1052.74618
[16] Moës, N.; Dolbow, J.; Belytschko, T., A finite element method for crack growth without remeshing, Internat. J. numer. methods engrg, 46, 131-150, (1999) · Zbl 0955.74066
[17] N. Moës, N. Sukumar, B. Moran, T. Belytschko, An extended finite element method (X-FEM) for two- and three-dimensional crack modelling, in: ECCOMAS 2000, Barcelona, Spain, September 11-14, 2000, Vienna University of Technology, Austria, ISBN 3-9501554-0-6
[18] J. Mosler, G. Meshke, 3D FE analysis of cracks by means of the strong discontinuity approach, in: ECCOMAS 2000, Barcelona, Spain, September 11-14, 2000, Vienna University of Technology, Austria, ISBN 3-9501554-0-6
[19] Oliver, J., Modeling strong discontinuities in solid mechanics via strain softening constitutive equations. part 1: fundamentals, Internat. J. numer. methods engrg, 39, 21, 3575-3600, (1996) · Zbl 0888.73018
[20] Oliver, J., Modeling strong discontinuities in solid mechanics via strain softening constitutive equations. part 2: numerical simulation, Internat. J. numer. methods engrg, 39, 21, 3601-3623, (1996) · Zbl 0888.73018
[21] Oliver, J., On the discrete constitutive models induced by strong discontinuity kinematics and continuum constitutive equations, Internat. J. solids and structures, 37, 7207-7229, (2000) · Zbl 0994.74004
[22] J. Oliver, Topics on failure mechanics, Technical Report, International Center for Numerical Methods in Engineering (CIMNE), Monograph no. 68, December 2002 · Zbl 1137.74005
[23] Oliver, J.; Cervera, M.; Manzoli, O., On the use of strain-softening models for the simulation of strong discontinuities in solids, (), 107-123, (Chapter 8)
[24] Oliver, J.; Cervera, M.; Manzoli, O., Strong discontinuities and continuum plasticity models: the strong discontinuity approach, Internat. J. plasticity, 15, 3, 319-351, (1999) · Zbl 1057.74512
[25] Oliver, J.; Huespe, A.; Samaniego, E., A study on finite elements for capturing strong discontinuities, Internat. J. numer. methods engrg, 56, 2135-2161, (2003) · Zbl 1038.74645
[26] J. Oliver, A.E. Huespe, Continuum approach to material failure in strong discontinuity settings, Comput. Methods Appl. Mech. Engrg., submitted for publication · Zbl 1060.74507
[27] Ortiz, M.; Leroy, Y.; Needleman, A., A finite element method for localized failure analysis, Comput. methods appl. mech. engrg, 61, 189-214, (1987) · Zbl 0597.73105
[28] Ottosen, N.S.; Runesson, K., Properties of discontinuous bifurcation solutions in elasto-plasticity, Internat. J. solids and structures, 27, 4, 401-421, (1991) · Zbl 0738.73021
[29] Regueiro, R.; Borja, R.I., A finite element model of localized deformation in frictional materials taking a strong discontinuity approach, Finite elements anal. design, 33, 283-315, (1999) · Zbl 0979.74072
[30] Rice, J.R., The localization of plastic deformation, (), 207-220
[31] J.G. Rots, Computational Modeling of Concrete Fractures, Thesis, Delft University of Technology, 1988
[32] Schreyer, H.L.; Sulsky, D.L.; Zhou, S.J., Modeling delamination as a strong discontinuity with the material point method, Comput. methods appl. mech. engrg, 191, 2483-2507, (2002) · Zbl 1054.74070
[33] Simo, J.; Oliver, J.; Armero, F., An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids, Comput. mech, 12, 277-296, (1993) · Zbl 0783.73024
[34] Wells, G.N.; Sluys, L.J., A new method, for modelling cohesive cracks finite elements, Internat. J. numer. methods engrg, 50, 2667-2682, (2001) · Zbl 1013.74074
[35] Willam, K., Constitutive models for engineering materials, (), 603-633
[36] Zienkiewicz, O.C.; Taylor, R.L., The finite element method, (2000), Butterworth-Heinemann Oxford, UK · Zbl 0991.74002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.