zbMATH — the first resource for mathematics

Basic gerbe over non-simply connected compact groups. (English) Zbl 1067.22009
Summary: We present an explicit construction of the basic bundle gerbes with connection over all connected compact simple Lie groups. These are geometric objects that appear naturally in the Lagrangian approach to the WZW conformal field theories. Our work extends the recent construction of E. Meinrenken [Enseign. Math. (2) 49, 307–333 (2003; Zbl 1061.53034)] restricted to the case of simply connected groups.

22E70 Applications of Lie groups to the sciences; explicit representations
Lie groups; Gerbes
Full Text: DOI arXiv
[1] Alvarez, O., Topological quantization and cohomology, Commun. math. phys., 100, 279-309, (1985) · Zbl 0612.55009
[2] Behrend, K.; Xu, P.; Zhang, B., Equivariant gerbes over compact simple Lie groups, CR acad. sci. Paris, Sér. I, 336, 251-256, (2003) · Zbl 1068.58010
[3] J.-L. Brylinski, Gerbes on complex reductive Lie groups. arXiv:math.DG/000 2158.
[4] D.S. Chatterjee, On gerbs, Ph.D. Thesis, Trinity College, Cambridge, 1998.
[5] Felder, G.; Gaw\( ȩ\)dzki, K.; Kupiainen, A., Spectra of wess – zumino – witten models with arbitrary simple groups, Commun. math. phys., 117, 127-158, (1988) · Zbl 0642.22005
[6] Fuchs, J.; Huiszoon, L.R.; Schellekens, A.N.; Schweigert, C.; Walcher, J., Boundaries, crosscaps and simple currents, Phys. lett. B, 495, 427-434, (2000) · Zbl 0976.81090
[7] K. Gaw\( ȩ\)dzki, Topological actions in two-dimensional quantum field theories, in: G. ’t Hooft, A. Jaffe, G. Mack, P.K. Mitter, R. Stora (Eds.) Non-perturbative Quantum Field Theory, Plenum Press, New York, 1988, pp. 101-142.
[8] Gaw\( ȩ\)dzki, K.; Kupiainen, A., Coset construction from functional integral, Nucl. phys. B, 320, 625-668, (1989)
[9] Gaw\( ȩ\)dzki, K.; Reis, N., WZW branes and gerbes, Rev. math. phys., 14, 1281-1334, (2002) · Zbl 1033.81067
[10] N.J. Hitchin, Lectures on special Lagrangian submanifolds, in: C. Vafa, S.-T. Yau (Eds.), Winter School on Mirror Symmetry, Vector Bundles and Lagrangian Submanifold, AMS/IP Studies on Advances Mathematics, vol. 23, American Mathematical Society, Providence, RI, 2001, pp. 151-182. · Zbl 1079.14522
[11] Kreuzer, M.; Schellekens, A.N., Simple currents versus orbifolds with discrete torsion—a complete classification, Nucl. phys. B, 411, 97-121, (1994) · Zbl 0921.17010
[12] E. Meinrenken, The basic gerbe over a compact simple Lie group, L’Enseignement Mathematique, in press. arXiv:math. DG/0209194. · Zbl 1061.53034
[13] Murray, M.K., Bundle gerbes, J. London math. soc., 54, 2, 403-416, (1996) · Zbl 0867.55019
[14] Murray, M.K.; Stevenson, D., Bundle gerbes: stable isomorphisms and local theory, J. London math. soc., 62, 2, 925-937, (2000) · Zbl 1019.55009
[15] N. Reis, Ph.D. Thesis, ENS-Lyon, 2003.
[16] E.R. Sharpe, Discrete torsion and gerbes I, II. arXiv:hep-th/9909108 and 9909120.
[17] Tits, J., Normalisateurs de tores. I. groupes de Coxeter étendus, J. algebra, 4, 96-116, (1966) · Zbl 0145.24703
[18] Witten, E., Non-abelian bosonization in two dimensions, Commun. math. phys., 92, 455-472, (1984) · Zbl 0536.58012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.