×

zbMATH — the first resource for mathematics

Analysis of the periodically fragmented environment model. I: Species persistence. (English) Zbl 1066.92047
Summary: This paper is concerned with the study of stationary solutions of the equation \[ u_t - \nabla \cdot (A(x)\nabla u) = f(x,u), \quad x \in \mathbb R^N, \] where the diffusion matrix A and the reaction term \(f\) are periodic in \(x\). We prove existence and uniqueness results for the stationary equation and we then analyze the behaviour of the solutions of the evolution equation for large times. These results are expressed by a condition on the sign of the first eigenvalue of the associated linearized problem with periodicity conditions. We explain the biological motivation and we also interpret the results in terms of species persistence in periodic environments. The effects of various aspects of heterogeneities, such as environmental fragmentation, are also discussed.

MSC:
92D40 Ecology
35K57 Reaction-diffusion equations
35Q92 PDEs in connection with biology, chemistry and other natural sciences
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Agmon, S.: Differential equations (Birmingham, Ala., 1983). North-Holland Math. Stud. 92, 7–17 (1984) · Zbl 0595.58044
[2] Ammerman, A.J., Cavalli-Sforza, L.L.: The Neolithic Transition and the Genetics of Populations in Europe. Princeton Univ. Press, Princeton, NJ, 1984
[3] Aronson, D.G., Weinberger, H.F.: Multidimensional nonlinear diffusions arising in population genetics. Adv. Math. 30, 33–76 (1978) · Zbl 0407.92014
[4] Berestycki, H.: Le nombre de solutions de certains problèmes semi-linéaires elliptiques. J. Func. Anal. 40, 1–29 (1981) · Zbl 0452.35038
[5] Berestycki, H., Hamel, F.: Front propagation in periodic excitable media. Commun. Pure Appl. Math. 55, 949–1032 (2002) · Zbl 1024.37054
[6] Berestycki, H., Hamel, F., Nadirashvili, N.: The speed of propagation for KPP type problems. I - Periodic framework. J. Europ. Math. Soc. 2005. J. Eur. Math. Soc. 7, 173–213 (2005) · Zbl 1142.35464
[7] Berestycki, H., Hamel, F., Roques, L.: Analysis of the periodically fragmented environment model : II - Biological invasions and pulsating travelling fronts. J. Math. Pures Appl. 2005. To appear · Zbl 1083.92036
[8] Berestycki, H., Hamel, F., Rossi, L.: Liouville theorems for semilinear elliptic equations in unbounded domains. Preprint · Zbl 1223.35022
[9] Berestycki, H., Lachand-Robert, T.: Some properties of monotone rearrangement with applications to elliptic equations in cylinders. Math. Nachr. 266, 3–19 (2004) · Zbl 1084.35003
[10] Berestycki, H., Nirenberg, L.: Travelling fronts in cylinders. Ann. Inst. H. Poincaré, Anal. Non Linéaire 9, 497–572 (1992) · Zbl 0799.35073
[11] Berestycki, H., Nirenberg, L., Varadhan, S.R.S.: The principal eigenvalue and maximum principle for second order elliptic operators in general domains. Commun. Pure Appl. Math. 47, 47–92 (1994) · Zbl 0806.35129
[12] Brown, K., Lin, S.S.: On the existence of positive eigenfunctions for an eigenvalue problem with indefinite weight function. J. Math. Anal. Appl. 75, 112–120 (1980) · Zbl 0437.35058
[13] Cantrell, R.S., Cosner, C.: Diffusive logistic equations with indefinite weights: population models in disrupted environments. Proc. Roy. Soc. Edinburgh 112, 293–318 (1989) · Zbl 0711.92020
[14] Cantrell, R.S., Cosner, C.: Diffusive logistic equations with indefinite weights: population models in disrupted environments II. SIAM J. Math. Anal. 22 (4), 1043–1064 (1991) · Zbl 0726.92024
[15] Cantrell, R.S., Cosner, C.: The effects of spatial heterogeneity in population dynamics. J. Math. Biol. 29, 315–338 (1991) · Zbl 0722.92018
[16] Cantrell, R.S., Cosner, C.: On the effects of spatial heterogeneity on the persistence of interacting species. J. Math. Biol. 37, 103–145 (1998) · Zbl 0948.92021
[17] Capdeboscq, Y.: Homogenization of a neutronic critical diffusion problem with drift. Proc. Royal Soc. Edinburgh 132 A, 567–594 (2002) · Zbl 1066.82530
[18] Cano-Casanova, S., López-Gómez, J.: Permanence under strong aggressions is possible. Ann. Inst. H. Poincaré, Anal. Non Linéaire 20, 999–1041 (2003) · Zbl 1086.35054
[19] Cavalli-Sforza, L.L., Feldman, M.W.: Cultural Transmission and Evolution : A Quantitative Approach. Princeton Univ. Press, Princeton, NJ, 1981 · Zbl 0479.92011
[20] Engländer, J., Kyprianou, A.E.: Local extinction versus local exponential growth for spatial branching processes. Ann. Probab. 32, 78–99 (2004) · Zbl 1056.60083
[21] Engländer, J., Pinsky, R.G.: On the construction and support properties of measure-valued diffusions on with spatially dependent branching. Ann. Probab. 27, 684–730 (1999) · Zbl 0979.60078
[22] Engländer, J., Pinsky, R.G.: Uniqueness/nonuniqueness for nonnegative solutions of second-order parabolic equations of the form ut=Lu+Vu–{\(\gamma\)} up in Rn. J. Diff. Equations 192, 396–428 (2003) · Zbl 1081.35050
[23] Fife, P.C., McLeod, J.B.: The approach of solutions of non-linear diffusion equations to traveling front solutions. Arch. Ration. Mech. Anal. 65, 335–361 (1977) · Zbl 0361.35035
[24] Fisher, R.A.: The advance of advantageous genes. Ann. Eugenics 7, 335–369 (1937) · JFM 63.1111.04
[25] Freidlin, M.: On wavefront propagation in periodic media. Stochastic analysis and applications, Adv. Probab. (Related Topics, 7, Dekker, New York, 1984) 147–166
[26] Freidlin, M.: Semi-linear PDEs and limit theorem for large deviations. Springer Lecture Notes in Mathematics, 1527, 1992 · Zbl 0777.60025
[27] Freidlin, M.: Markov Processes and Differential Equations: Asymptotic Problems. Lectures in Mathematics ETH Zurich, Birkhauser Verlag, Basel, 1996 · Zbl 0863.60049
[28] Gärtner, J., Freidlin, M.: On the propagation of concentration waves in periodic and random media. Sov. Math. Dokl. 20, 1282–1286 (1979) · Zbl 0447.60060
[29] Hardy, G.H., Littlewood, J.E., P’olya, G.: Inequalities. Cambridge University Press, Cambridge, 1952
[30] Harrell, E.M., Kröger, P., Kurata, K.: On the placement of an obstacle or a well so as to optimize the fundamental eigenvalue. SIAM J. Math. Anal. 33 (1), 240–259 (2001) · Zbl 0994.47015
[31] Hess, P.: Periodic-parabolic boundary value problems and positivity. Pitman Research Notes in Mathematics Series, 247. Longman Scientific & Technical, Harlow, UK, 1991 · Zbl 0731.35050
[32] Hiebeler, D.E.: Populations on Fragmented Landscapes with Spatially Structured Heterogeneities: Landscape Generation and Local Dispersal. Ecology 81 (6), 1629–1641 (2000)
[33] Hudson, W., Zinner, B.: Existence of travelling waves for reaction-diffusion equations of Fisher type in periodic media. In: Boundary Value Problems for Functional-Differential Equations. J. Henderson (ed.), World Scientific, 1995, pp. 187–199 · Zbl 0846.35062
[34] Hughes, J.: Modeling the effect of landscape pattern on mountain pine beetles. Thesis, Simon Fraser University, 2002
[35] Hutson, V., Mischaikow, K., Polacik, P.: The Evolution of dispersal rates in a heterogeneous time-periodic environment. J. Math. Biol. 43, 501–533 (2001) · Zbl 0996.92035
[36] Kaipio, J.P., Tervo, J., Vauhkonen, M.: Simulations of the heterogeneity of environments by finite element methods. Math. Comput. Simul. 39, 155–172 (1995) · Zbl 05478609
[37] Kawohl, B.: On the isoperimetric nature of a rearrangement inequality and its consequences for some variational problems. Arch. Ration. Mech. Anal. 94, 227–243 (1986) · Zbl 0603.49030
[38] Kinezaki, N., Kawasaki, K., Takasu, F., Shigesada, N.: Modeling biological invasion into periodically fragmented environments. Theor. Population Biol. 64, 291–302 (2003) · Zbl 1102.92057
[39] Kolmogorov, A.N., Petrovsky, I.G., Piskunov, N.S.: Étude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique. Bulletin Université d’État à Moscou (Bjul. Moskowskogo Gos. Univ.), Série internationale A 1, 1–26 (1937)
[40] Ludwig, D., Aronson, D.G., Weinberger, H.F.: Spatial patterning of the spruce budworm. J. Math. Biol. 8, 217–258 (1979) · Zbl 0412.92020
[41] Murray, J.D., Sperb, R.P.: Minimum domains for spatial patterns in a class of reaction-diffusion equations. J. Math. Biol. 18, 169–184 (1983) · Zbl 0526.92013
[42] Pinsky, R.G.: Positive harmonic functions and diffusion. Cambridge University Press, 1995 · Zbl 0858.31001
[43] Pinsky, R.G.: Second order elliptic operators with periodic coefficients: criticality theory, perturbations, and positive harmonic functions. J. Funct. Anal. 129, 80–107 (1995) · Zbl 0826.35030
[44] Pinsky, R.G.: Transience, recurrence and local extinction properties of the support for supercritical finite measure-valued diffusions. Ann. Probab. 24, 237–267 (1996) · Zbl 0854.60087
[45] Senn, S.: On a nonlinear elliptic eigenvalue problem with Neumann boundary conditions, with an application to population genetics. Commun. Part. Diff. Equations 8, 1199–1228 (1983) · Zbl 0526.35067
[46] Senn, S., Hess, P.: On positive solutions of a linear elliptic eigenvalue problem with Neumann boundary conditions. Math. Ann. 258, 459–470 (1981/82) · Zbl 0485.35042
[47] Shigesada, N., Kawasaki, K.: Biological invasions: theory and practice. Oxford Series in Ecology and Evolution, Oxford : Oxford University Press, 1997
[48] Shigesada, N., Kawasaki, K., Teramoto, E.: Traveling periodic waves in heterogeneous environments. Theor. Population Biol. 30, 143–160 (1986) · Zbl 0591.92026
[49] Skellam, J.G.: Random dispersal in theoretical populations. Biometrika 38, 196–218 (1951) · Zbl 0043.14401
[50] Weinberger, H.: On spreading speed and travelling waves for growth and migration models in a periodic habitat. J. Math. Biol. 45, 511–548 (2002) · Zbl 1058.92036
[51] Xin, X.: Existence of planar flame fronts in convective-diffusive periodic media. Arch. Ration. Mech. Anal. 121, 205–233 (1992) · Zbl 0764.76074
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.