×

zbMATH — the first resource for mathematics

Instabilities and transition of a sphere falling or ascending freely in a Newtonian fluid. (English) Zbl 1065.76068
Summary: The scenario of transition to chaos for a sphere falling or ascending under the action of gravity in a Newtonian fluid is investigated by numerical simulation. The mathematical formulation is parameterized using two non-dimensional parameters: the solid/fluid density ratio and the generalized Galileo number expressing the ratio between the gravity–buoyancy and viscosity effects. The study is carried out fully in this two-parameter space. The results show that for all density ratios the vertical fall or ascension becomes unstable via a regular axisymmetry breaking bifurcation. This bifurcation sets in slightly earlier for light spheres than for dense ones. A steady oblique fall or ascension follows before losing stability and giving way to an oscillating oblique movement. The secondary Hopf bifurcation is shown not to correspond to that of a fixed sphere wake for density ratios lower than 2.5, for which the oscillations have a significantly lower frequency. Trajectories of falling spheres become chaotic directly from the oblique oscillating regime. Ascending spheres present a specific behaviour before reaching a chaotic regime. The periodically oscillating oblique regime undergoes a subharmonic transition yielding a low-frequency oscillating ascension which is vertical in the mean (zigzagging regime). In all these stages of transition, the trajectories are planar with a plane selected randomly during the axisymmetry breaking. The chaotic regime appears to result from an interplay of a regular and of an additional Hopf bifurcation, and the onset of the chaotic regime is accompanied by the loss of the remaining planar symmetry. The asymptotic chaotic states present an intermittent character, the relaminarization phases letting the subcritical plane and periodic trajectories reappear.

MSC:
76D99 Incompressible viscous fluids
76M22 Spectral methods applied to problems in fluid mechanics
76E99 Hydrodynamic stability
PDF BibTeX XML Cite
Full Text: DOI