zbMATH — the first resource for mathematics

Global solvability for a class of complex vector fields on the two-torus. (English) Zbl 1065.35088
Summary: We consider complex vector fields \(L\) on the two-torus. We regard \(L\) as an operator acting on smooth functions and study conditions for \(L\) to have a closed range. We also give conditions for the range of \(L\) to have finite codimension. Our results involve condition (P) of Nirenberg and Trèves. One-dimensional orbits diffeomorphic to the unit circle are allowed.

35F05 Linear first-order PDEs
35A05 General existence and uniqueness theorems (PDE) (MSC2000)
Full Text: DOI
[1] DOI: 10.1006/jdeq.1998.3563 · Zbl 0926.35030 · doi:10.1006/jdeq.1998.3563
[2] Bergamasco A. P., Mat. Contemporânea 18 pp 31– (2000)
[3] DOI: 10.1007/BF02921719 · Zbl 0917.58004 · doi:10.1007/BF02921719
[4] Godin P., Ann. Inst. Fourier, Grenoble 29 (2) pp 223– (1979) · Zbl 0365.58019 · doi:10.5802/aif.748
[5] Helffer B., Ann. Inst. Fourier, Grenoble 28 (2) pp 221– (1978) · Zbl 0365.35012 · doi:10.5802/aif.697
[6] DOI: 10.2307/1971189 · Zbl 0396.35087 · doi:10.2307/1971189
[7] Hörmander L., The Analysis of Linear Partial Differential Operators IV (1984)
[8] Hounie J., Trans. Amer. Math. Soc. 252 pp 233– (1979)
[9] Kato T., 2nd ed., in: Perturbation Theory for Linear Operators (1980)
[10] Köthe G., Topological Vector Spaces II (1979) · Zbl 0417.46001 · doi:10.1007/978-1-4684-9409-9
[11] DOI: 10.1002/cpa.3160230314 · Zbl 0208.35902 · doi:10.1002/cpa.3160230314
[12] DOI: 10.1090/S0002-9947-1973-0321133-2 · doi:10.1090/S0002-9947-1973-0321133-2
[13] Treves F., Topological Vector Spaces, Distributions and Kernels (1967)
[14] Wermer J., 2nd ed., in: Banach Algebras and Several Complex Variables (1976) · Zbl 0336.46055
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.