×

zbMATH — the first resource for mathematics

Global adapted solution of one-dimensional backward stochastic Riccati equations, with application to the mean-variance hedging. (English) Zbl 1064.93050
Summary: Backward stochastic Riccati equations are motivated by the solution of general linear quadratic optimal stochastic control problems with random coefficients, and the solution has been open in the general case. One distinguishing difficult feature is that the drift contains a quadratic term of the second unknown variable. In this paper, we obtain the global existence and uniqueness result for a general one-dimensional backward stochastic Riccati equation. This solves the one-dimensional case of Bismut-Peng’s problem which was initially proposed by J. M. Bismut [Lect. Notes Math. 649, 180–264 (1978; Zbl 0389.93052)]. We use an approximation technique by constructing a sequence of monotone drifts and then passing to the limit. We make full use of the special structure of the underlying Riccati equation. The singular case is also discussed. Finally, the above results are applied to solve the mean-variance hedging problem with general random market conditions.

MSC:
93E20 Optimal stochastic control
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
91G80 Financial applications of other theories
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bañuelos, R.; Bennett, A., Paraproducts and commutators of martingale transforms, Proc. amer. math. soc., 103, 1226-1234, (1988) · Zbl 0663.60043
[2] Bismut, J.M., Conjugate convex functions in optimal stochastic control, J. math. anal. appl., 44, 384-404, (1973) · Zbl 0276.93060
[3] Bismut, J.M., Linear quadratic optimal stochastic control with random coefficients, SIAM J. control optim., 14, 419-444, (1976) · Zbl 0331.93086
[4] Bismut, J.M., Controle des systems lineares quadratiques: applications de l’integrale stochastique, (), 180-264
[5] Chen, S.; Li, X.; Zhou, X., Stochastic linear quadratic regulators with indefinite control weight costs, SIAM J. control optim., 36, 1685-1702, (1998) · Zbl 0916.93084
[6] Chen, S.; Yong, J., Stochastic linear quadratic optimal control problems, Appl. math. optim., 43, 21-45, (2001) · Zbl 0969.93044
[7] Chen, S., Yong, J., 2001b. Stochastic linear quadratic optimal control problems, II. Preprint. · Zbl 0969.93044
[8] Chen, S., Yong, J., 2001c. Solvability of a stochastic linear quadratic optimal control problem. Preprint.
[9] Chen, S.; Zhou, X., Stochastic linear quadratic regulators with indefinite control weight costs, II, SIAM J. control optim., 39, 1065-1081, (2000) · Zbl 1023.93072
[10] Duffie, D.; Richardson, H.R., Mean – variance hedging in continuous time, Ann. appl. probab., 1, 1-15, (1991) · Zbl 0735.90021
[11] Gal’chuk, L.I., Existence and uniqueness of a solution for stochastic equations with respect to semimartingales, Theory probab. appl., 23, 751-763, (1978) · Zbl 0422.60047
[12] Gourieroux, C.; Laurent, J.P.; Pham, H., Mean – variance hedging and numéraire, Math. finance, 8, 179-200, (1998) · Zbl 1020.91024
[13] Heston, S., A closed-form solution for option with stochastic volatility with applications to bond and currency options, Rev. financial stud., 6, 327-343, (1993) · Zbl 1384.35131
[14] Hull, J.; White, A., The pricing of options on assets with stochastic volatilities, J. finance, 42, 281-300, (1987)
[15] Kobylanski, M., Résultats d’existence et d’unicité pour des équations différentielles stochastiques rétrogrades avec des générateurs á croissance quadratique, C. R. acad. sci. Paris, 324, Série I, 81-86, (1997) · Zbl 0880.60061
[16] Kohlmann, M., Tang, S., 2001. Minimization of risk, LQ theory, and mean – variance hedging and pricing. Submitted to SIAM J. Control Optim.
[17] Kohlmann, M.; Zhou, X., Relationship between backward stochastic differential equations and stochastic controls: a linear-quadratic approach, SIAM J. control optim., 38, 1392-1407, (2000) · Zbl 0960.60052
[18] Laurent, J.P.; Pham, H., Dynamic programming and mean – variance hedging, Finance stochastics, 3, 83-110, (1999) · Zbl 0924.90021
[19] Lepeltier, J.P.; San Martin, J., Backward stochastic differential equations with continuous coefficient, Statist. probab. lett., 32, 425-430, (1997) · Zbl 0904.60042
[20] Lepeltier, J.P.; San Martin, J., Existence for BSDE with superlinear-quadratic coefficient, Stochastics stochastics rep., 63, 227-240, (1998) · Zbl 0910.60046
[21] Merton, R., 1971. Optimum consumption and portfolio rules in a continuous time model. J. Econom. Theory 3, 373-413; Erratum 6 (1973) 213-214. · Zbl 1011.91502
[22] Pardoux, E.; Peng, S., Adapted solution of backward stochastic equation, Systems control lett., 14, 55-61, (1990) · Zbl 0692.93064
[23] Pardoux, E.; Peng, S., Backward stochastic differential equations and quasi-linear parabolic partial differential equations, (), 200-217 · Zbl 0766.60079
[24] Pardoux, E.; Tang, S., Forward – backward stochastic differential equations with application to quasi-linear partial differential equations of second-order, Probab. theory related fields, 114, 123-150, (1999)
[25] Peng, S., Stochastic hamilton – jacobi – bellman equations, SIAM J. control optim., 30, 284-304, (1992) · Zbl 0747.93081
[26] Peng, S., Probabilistic interpretation for systems of semilinear parabolic pdes, Stochastics stochastic rep., 37, 61-74, (1991) · Zbl 0739.60060
[27] Peng, S., A generalized dynamic programming principle and hamilton – jacobi – bellman equation, Stochastics stochastics rep., 38, 119-134, (1992) · Zbl 0756.49015
[28] Peng, S., 1999. Some open problems on backward stochastic differential equations. In: Chen, S., Li, X., Yong, J., Zhou, X. (Eds.), Control of Distributed Parameter and Stochastic Systems, Proceedings of the IFIP WG 7.2 International Conference, June 19-22, 1998, Hangzhou, China. Kluwer Academic Publishers, Dordrecht, pp. 265-273. · Zbl 0981.93079
[29] Peng, S., A general stochastic maximum principle for optimal control problems, SIAM J. control optim., 28, 966-979, (1990) · Zbl 0712.93067
[30] Pham, H.; Rheinländer, T.; Schweizer, M., Mean – variance hedging for continuous processes: new proofs and examples, Finance stochastics, 2, 173-198, (1998) · Zbl 0894.90023
[31] Schweizer, M., Mean – variance hedging for general claims, Ann. appl. probab., 2, 171-179, (1992) · Zbl 0742.60042
[32] Schweizer, M., Approaching random variables by stochastic integrals, Ann. probab., 22, 1536-1575, (1994) · Zbl 0814.60041
[33] Schweizer, M., Approximation pricing and the variance-optimal martingale measure, Ann. probab., 24, 206-236, (1996) · Zbl 0854.60045
[34] Stein, E.M.; Stein, J.C., Stock price distributions with stochastic volatility: an analytic approach, Rev. financial studies, 4, 727-752, (1991) · Zbl 1458.62253
[35] Tang, S.; Li, X., Necessary conditions for optimal control of stochastic systems with random jumps, SIAM J. control optim., 32, 1447-1475, (1994) · Zbl 0922.49021
[36] Yong, J.; Zhou, X., Stochastic controls: Hamiltonian systems and HJB equations, (1999), Springer Berlin · Zbl 0943.93002
[37] Wonham, W.M., On a matrix Riccati equation of stochastic control, SIAM J. control optim., 6, 312-326, (1968) · Zbl 0164.19101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.