×

zbMATH — the first resource for mathematics

Hybrid GA and SA dynamic set-up planning optimization. (English) Zbl 1064.90553
Summary: Set-up planning is used to determine the set-up of a workpiece with a certain orientation and fixturing on a worktable, as well as the number and sequence of set-ups and operations performed in each set-up. This paper presents a concurrent constraint planning methodology and a hybrid genetic algorithm (GA) and simulated annealing (SA) approach for set-up planning, and re-set-up planning in a dynamic workshop environment. The proposed approach and optimization methodology analyses the precedence relationships among features to generate a precedence relationship matrix (PRM). Based on the PRM and inquiry results from a dynamic workshop resource database, the hybrid GA and SA approach, which adopts the feature-based representation, optimizes the set-up plan using six cost indices. The PRM acts as the main constraints for the set-up planning optimization. Case studies show that the hybrid GA and SA approach is able to generate optimal results as well as carry out re-set-up planning on the occurrence of workshop resource changes.

MSC:
90B50 Management decision making, including multiple objectives
90C59 Approximation methods and heuristics in mathematical programming
90B90 Case-oriented studies in operations research
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] AARTS E., Simulated Annealing and Bollzmann Machine (1939)
[2] ALANDER, J. T. On optimal population size of genetic algorithms. Proceedings of CompEuro 92. The Hague, The Netherlands. pp.65–70.
[3] DOI: 10.1016/S0007-8506(07)61673-4 · doi:10.1016/S0007-8506(07)61673-4
[4] BRUNS, R. Direct chromosome representation and advanced genetic operators for production scheduling. Proceedings of the Fifth International Conference on Genetic Algorithms. San Mateo, CA. pp.352–359. Morgan Kaufmann.
[5] CARTWRIGOT, H. M. and MOTT, G. F. Looking around: using clues from the data space to guide genetic algorithm searches. Proceedings of the Fourth International Conference on Genetic Algorithms. San Mateo, CA. pp.108–114. Morgan Kaufmann.
[6] CHANG T. C., Expert Process Planning for Manufacturing (1990)
[7] CHEN J., Setup planning using Hopfield neural network and simulated annealing (1997)
[8] DOI: 10.1016/0010-4485(94)90106-6 · Zbl 0806.65008 · doi:10.1016/0010-4485(94)90106-6
[9] DOI: 10.1016/0010-4485(95)00052-6 · Zbl 05476325 · doi:10.1016/0010-4485(95)00052-6
[10] DAVIS L., Genetic Algorithms and Simulated Annealing (1987) · Zbl 0684.68013
[11] DE JONG K. A., An analysis of the behavior of a class of genetic adaptive systems (1975)
[12] DOI: 10.1016/S0007-8506(07)62501-3 · doi:10.1016/S0007-8506(07)62501-3
[13] DOI: 10.1016/0736-5845(95)00016-X · doi:10.1016/0736-5845(95)00016-X
[14] DONG, X., OILMAN, C. R. and WOZNY, M. J. 1994.Artificial Intelligence in Optimal Design and Manufacturing, 5–32. Englewood Cliffs, NJ: Prentice Hall.
[15] GEN M., Genetic Algorithms and Engineering Design (1997)
[16] GOLDBERG D. E., TCGA Report No. 85001, in: Optimal initial population size for binary-coded genetic algorithms (1935)
[17] DOI: 10.1007/BF00123966 · doi:10.1007/BF00123966
[18] DOI: 10.1016/0010-4485(95)00071-2 · Zbl 0852.68107 · doi:10.1016/0010-4485(95)00071-2
[19] HAYES C., Knowledge Based Expert Systems for Manufacturing 24 pp 221– (1986)
[20] DOI: 10.1126/science.220.4598.671 · Zbl 1225.90162 · doi:10.1126/science.220.4598.671
[21] ONG S. K., An intelligent fuzzy set-up planner for the machining environment (1995)
[22] OZTURK F., Computer Integrated Manufacturing Systems 9 pp 207– (1995)
[23] DOI: 10.1016/0278-6125(92)90015-8 · doi:10.1016/0278-6125(92)90015-8
[24] DOI: 10.1016/0278-6125(96)82335-1 · doi:10.1016/0278-6125(96)82335-1
[25] Szu, H. Fast simulated annealing. Proceedings of the American Institute of Physics Conference on Neural Computing. pp.420–425.
[26] DOI: 10.1016/0166-3615(91)90031-4 · doi:10.1016/0166-3615(91)90031-4
[27] DOI: 10.1080/00207549108930087 · doi:10.1080/00207549108930087
[28] YUT G., Engineering Design and Automation 1 pp 21– (1995)
[29] ZHANG F., Genetic algorithm in computer-aided process planning (1997)
[30] DOI: 10.1016/S0736-5845(98)00031-3 · doi:10.1016/S0736-5845(98)00031-3
[31] DOI: 10.1007/BF01179346 · doi:10.1007/BF01179346
[32] DOI: 10.1080/00207549608905000 · Zbl 0928.90032 · doi:10.1080/00207549608905000
[33] ZHANG, Y. F., MA, G. H. and NEE, A. Y. C. Modeling process planning problems in an optimization perspective. Proceedings of the 1999 IEEE International Conference on Robotics & Automation. Detroit, Michigan. pp.1764–1769.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.