×

zbMATH — the first resource for mathematics

Optimization of the norm of a vector-valued DC function and applications. (English) Zbl 1064.90034
Summary: In this paper, we show that a DC representation can be obtained explicitly for the composition of a gauge with a DC mapping, so that the optimization of certain functions involving terms of this kind can be made by using standard DC optimization techniques. Applications to facility location theory and multiple-criteria decision making are presented.

MSC:
90C26 Nonconvex programming, global optimization
90B85 Continuous location
90C29 Multi-objective and goal programming
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Horst, R., and Thoai, N. V., DC Programming: Overview, Journal of Optimization Theory and Applications, Vol. 103, pp. 1–43, 1999. · Zbl 1073.90537 · doi:10.1023/A:1021765131316
[2] Horst, R., and Tuy, H., Global Optimization: Deterministic Approaches, Springer Verlag, Berlin, Germany, 1996. · Zbl 0867.90105
[3] Tuy, H., DC Optimization: Theory, Methods, and Algorithms, Handbook of Global Optimization, Edited by R. Horst and P. M. Pardalos, Kluwer Academic Publishers, Dordrecht, Holland, pp. 149–216, 1995. · Zbl 0832.90111
[4] Hartman, P., On Functions Representable as a Difference of Convex Functions, Pacific Journal of Mathematics, Vol. 9, pp. 707–713, 1959. · Zbl 0093.06401 · doi:10.2140/pjm.1959.9.707
[5] Tuy, H., Convex Analysis and Global Optimization, Kluwer Academic Publishers, Dordrecht, Holland, 1998. · Zbl 0904.90156
[6] Michelot, C., The Mathematics of Continuous Location, Studies in Locational Analysis, Vol. 5, pp. 59–83, 1993.
[7] Rockafellar, R. T., Convex Analysis, Princeton University Press, Princeton, New Jersey, 1970. · Zbl 0193.18401
[8] Aneja, Y. P., and Parlar, M., Algorithms for Weber Facility Location in the Presence of Forbidden Regions and/or Barriers to Travel, Transportation Science, Vol. 28, pp. 70–76, 1994. · Zbl 0799.90072 · doi:10.1287/trsc.28.1.70
[9] Brimberg, J., and Wesolowsky, G. O., The Rectilinear Distance Minimum Problem with Minimum Distance Constraints, Location Science, Vol. 3, pp. 203–215, 1995. · Zbl 0916.90187 · doi:10.1016/0966-8349(95)00015-1
[10] Hamacher, H. W., and Nickel, S., Restricted Planar Location Problems and Applications, Naval Research Logistics, Vol. 42, pp. 967–992, 1995. · Zbl 0845.90082 · doi:10.1002/1520-6750(199509)42:6<967::AID-NAV3220420608>3.0.CO;2-X
[11] Bittner, L., Some Representation Theorems for Functions and Sets and Their Application to Nonlinear Programming, Numerische Mathematik, Vol. 16, pp. 32–51, 1970. · Zbl 0217.27602 · doi:10.1007/BF02162405
[12] Hiriart-Urruty, J. B., Generalized Differentiability, Duality, and Optimization for Problems Dealing with Differences of Convex Functions, Convexity and Duality in Optimization, Edited by J. Ponstein, Springer Verlag, Berlin, Germany, pp. 37–69, 1985. · Zbl 0591.90073
[13] Blanquero, R., and Carrizosa, E., On Covering Methods for DC Optimization, To appear in Journal of Global Optimization. · Zbl 1039.90055
[14] Hiriart-Urruty. J. B., Convex Analysis and Minimization Algorithms, I, Springer Verlag, Berlin, Germany, 1993. · Zbl 0795.49001
[15] Bazaraa, M. S., Sherali, H. D., and Shetty, C. M., Nonlinear Programming: Theory and Algorithms, John Wiley and Sons, New York, NY, 1993. · Zbl 0774.90075
[16] Zeleny, M., Compromise Programming, Multiple-Criteria Decision Making, Edited by J. L. Cochrane, and M. Zeleny, University of South Carolina Press, Columbia, South Carolina, pp. 262–301, 1973.
[17] Zeleny, M., A Concept of Compromise Solutions and the Method of the Displaced Ideal, Computers and Operations Research, Vol. 1, pp. 479–496, 1974. · doi:10.1016/0305-0548(74)90064-1
[18] Zeleny, M., Multiple-Criteria Decision Making, Springer Verlag, Berlin, Germany, 1976. · Zbl 0319.00012
[19] Romero, C., Handbook of Critical Issues in Goal Programming, Pergamon Press, Oxford, England, 1991. · Zbl 0817.68034
[20] Saber, H. M., and Ravindran, A., Nonlinear Goal Programming Theory and Practice: A Survey, Computers and Operations Research, Vol. 20, pp. 275–291, 1993. · Zbl 0771.90087 · doi:10.1016/0305-0548(93)90004-3
[21] Saber, H. M., and Ravindran, A., A Partitioning Gradient Based (PGB) Algorithm for Solving Nonlinear Goal Programming Problems, Computers and Operations Research, Vol. 23, pp. 141–152, 1995. · Zbl 0868.90102 · doi:10.1016/0305-0548(95)00011-A
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.