×

zbMATH — the first resource for mathematics

Thin liquid films on a slightly inclined heated plate. (English) Zbl 1063.76032
The authors revisit the problem of a heated thin liqid film on a slightly inclined substrate with two motivations in mind: a) they are interested in the multiplicity of solutions to the nonlinear evolution equation and their stability properties, and b) the authors wish to understand the effects of small inclination of the substrate. The essence of the problem is captured by a simplified model that omits complications due to effective molecular interactions and the effects of inertia and evaporation. The authors focus on one-dimensional films, and examine the consequences of a long wavelength longitudinal instability of a flat film that sets in when the Maragoni number exceeds a critical value. They are able to explore the sequence of transitions that takes place with increasing inclination of the substrate before the Kuramoto-Sivashinsky-like behaviour is recovered.

MSC:
76E17 Interfacial stability and instability in hydrodynamic stability
76A20 Thin fluid films
80A20 Heat and mass transfer, heat flow (MSC2010)
Software:
AUTO
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Chang, H.-C., Wave evolution on a falling film, Annu. rev. fluid mech., 26, 103-136, (1994)
[2] Oron, A.; Davis, S.H.; Bankoff, S.G., Long-scale evolution of thin liquid films, Rev. mod. phys., 69, 931-980, (1997)
[3] Rabaud, M., Interface dynamics in the printer instability, Ann. phys. Paris, 19, 659-690, (1994)
[4] Burelbach, J.; Bankoff, S.; Davis, S., Nonlinear stability of evaporating/condensing liquid films, J. fluid mech., 195, 463-494, (1988) · Zbl 0653.76035
[5] Oron, A.; Rosenau, P., Formation of patterns induced by thermocapillarity and gravity, J. phys. II France, 2, 131-146, (1992)
[6] Deissler, R.J.; Oron, A., Stable localized patterns in thin liquid films, Phys. rev. lett., 68, 2948-2951, (1992)
[7] Oron, A., Nonlinear dynamics of three-dimensional long-wave Marangoni instability in thin liquid films, Phys. fluids, 12, 1633-1645, (2000) · Zbl 1184.76407
[8] Oron, A.; Rosenau, P., On a nonlinear thermocapillary effect in thin liquid layers, J. fluid mech., 273, 361-374, (1994) · Zbl 0825.76240
[9] VanHook, S.J.; Schatz, M.F.; Swift, J.B.; McCormick, W.D.; Swinney, H.L., Long-wavelength surface-tension-driven Bénard convection: experiment and theory, J. fluid mech., 345, 45-78, (1997) · Zbl 0927.76036
[10] Boos, W.; Thess, A., Cascade of structures in long-wavelength Marangoni instability, Phys. fluids, 11, 1484-1494, (1999) · Zbl 1147.76333
[11] Ramaswamy, B.; Chippada, S.; Joo, S.W., A full-scale numerical study of interfacial instabilities in thin-film flows, J. fluid mech., 325, 163-194, (1996) · Zbl 0889.76021
[12] Benney, D.J., Long waves on liquid films, J. math. phys., 45, 150-155, (1966) · Zbl 0148.23003
[13] Gjevik, B., Occurrence of finite-amplitude surface waves on falling liquid films, Phys. fluids, 13, 1918-1925, (1970) · Zbl 0217.56102
[14] Lin, S., Finite amplitude side-band instability of a viscous film, J. fluid mech., 63, 417-429, (1974) · Zbl 0283.76035
[15] Joo, S.W.; Davis, S.H.; Bankoff, S.G., Long-wave instabilities of heated falling films: two-dimensional theory of uniform layers, J. fluid mech., 230, 117-146, (1991) · Zbl 0728.76047
[16] Joo, S.W.; Davis, S.H., Instabilities of three-dimensional viscous falling films, J. fluid mech., 242, 529-547, (1992) · Zbl 0825.76193
[17] Joo, S.W.; Davis, S.H.; Bankoff, S.G., A mechanism for rivulet formation in heated falling films, J. fluid mech., 321, 279-298, (1996) · Zbl 0880.76030
[18] Davis, S.H., Thermocapillary instabilities, Ann. rev. fluid mech., 19, 403-435, (1987) · Zbl 0679.76052
[19] Golovin, A.A.; Nepomnyashchy, A.A.; Pismen, L.M., Interaction between short-scale Marangoni convection and longscale deformational instability, Phys. fluids, 6, 34-48, (1994) · Zbl 0826.76027
[20] Kevrekidis, I.G.; Nicolaenko, B.; Scovel, J.C., Back in the saddle again—a computer-assisted study of the kuramoto – sivashinsky equation, SIAM J. appl. math., 50, 760-790, (1990) · Zbl 0722.35011
[21] E.J. Doedel, A.R. Champneys, T. Fairgrieve, Y. Kuznetsov, B. Sandstede, X. Wang, AUTO97: continuation and bifurcation software for ordinary differential equations, Concordia University, Montreal, 1997.
[22] Doedel, E.; Keller, H.B.; Kernevez, J.P., Numerical analysis and control of bifurcation problems. I. bifurcation in finite dimensions, Int. J. bifurc. chaos, 1, 493-520, (1991) · Zbl 0876.65032
[23] Doedel, E.; Keller, H.B.; Kernevez, J.P., Numerical analysis and control of bifurcation problems. II. bifurcation in infinite dimensions, Int. J. bifurc. chaos, 1, 745-772, (1991) · Zbl 0876.65060
[24] Ruyer-Quil, C.; Manneville, P., Improved modeling of flows down inclined planes, Eur. phys. J. B, 15, 357-369, (2000)
[25] U. Thiele, M.G. Velarde, K. Neuffer, Dewetting: Film rupture by nucleation in the spinodal regime, Phys. Rev. Lett. 87 (2001) 016104, 1-4.
[26] Thiele, U.; Neuffer, K.; Pomeau, Y.; Velarde, M.G., On the importance of nucleation solutions for the rupture of thin liquid films, Colloid surf. A, 206, 135-155, (2002)
[27] U. Thiele, M.G. Velarde, K. Neuffer, M. Bestehorn, Y. Pomeau, Sliding drops in the diffuse interface model coupled to hydrodynamics, Phys. Rev. E 64 (2001) 061601, 1-12.
[28] Thiele, U.; Neuffer, K.; Bestehorn, M.; Pomeau, Y.; Velarde, M.G., Sliding drops on an inclined plane, Colloid surf. A, 206, 87-104, (2002)
[29] Thiele, U.; Knobloch, E., Front and back instability of a liquid film on a slightly inclined plate, Phys. fluids, 15, 892-907, (2003) · Zbl 1186.76522
[30] Skotheim, J.M.; Thiele, U.; Scheid, B., On the instability of a falling film due to localized heating, J. fluid mech., 475, 1-19, (2003) · Zbl 1060.76054
[31] Ecke, R.E.; Zhong, F.; Knobloch, E., Hopf bifurcation with broken reflection symmetry in rotating rayleigh-Bénard convection, Europhys. lett., 19, 177-182, (1992)
[32] Cahn, J.W.; Hilliard, J.W., Free energy of a nonuniform system. 1. interfacial free energy, J. chem. phys., 28, 258-267, (1958)
[33] Novick-Cohen, A.; Segel, L.A., Nonlinear aspects of the cahn – hilliard equation, Physica D, 10, 277-298, (1984)
[34] Novick-Cohen, A., The nonlinear cahn – hilliard equation: transition from spinodal decomposition to nucleation behavior, J. statist. phys., 38, 707-723, (1985)
[35] Mitlin, V.S., Dewetting of solid surface: analogy with spinodal decomposition, J. colloid interf. sci., 156, 491-497, (1993)
[36] Sharma, A.; Khanna, R., Pattern formation in unstable thin liquid films, Phys. rev. lett., 81, 3463-3466, (1998)
[37] Oron, A., Three-dimensional nonlinear dynamics of thin liquid films, Phys. rev. lett., 85, 2108-2111, (2000)
[38] Bertozzi, A.L.; Grün, G.; Witelski, T.P., Dewetting films: bifurcations and concentrations, Nonlinearity, 14, 1569-1592, (2001) · Zbl 1006.35049
[39] U. Thiele, M.G. Velarde, K. Neuffer, Y. Pomeau, Film rupture in the diffuse interface model coupled to hydrodynamics, Phys. Rev. E 64 (2001) 031602, 1-14.
[40] Golovin, A.A.; Nepomnyashchy, A.A.; Davis, S.H.; Zaks, M.A., Convective cahn – hilliard models: from coarsening to roughening, Phys. rev. lett., 86, 1550-1553, (2001)
[41] Eres, M.; Schwartz, L.; Roy, R., Fingering phenomena for driven coating films, Phys. fluids, 12, 1278-1295, (2000) · Zbl 1149.76371
[42] M. Bestehorn, K. Neuffer, Surface patterns of laterally extended thin liquid films in three dimensions, Phys. Rev. Lett. 87 (2001) 046101, 1-4.
[43] Yiantsios, S.G.; Higgins, B.G., Rayleigh – taylor instability in thin viscous films, Phys. fluids A, 1, 1484-1501, (1989) · Zbl 0691.76056
[44] Chang, H.-C., Onset of nonlinear waves on falling film, Phys. fluids A, 1, 1314-1327, (1989) · Zbl 0673.76038
[45] Nguyen, L.T.; Balakotaiah, V., Modeling and experimental studies of wave evolution on free falling viscous films, Phys. fluids, 12, 2236-2256, (2000) · Zbl 1184.76391
[46] M. Golubitsky, D.G. Schaeffer, Singularities and Groups in Bifurcation Theory, vol. 1, Springer, New York, 1985. · Zbl 0607.35004
[47] Tuckerman, L.S.; Barkley, D., Bifurcation-analysis of the eckhaus instability, Physica D, 46, 57-86, (1990) · Zbl 0721.35008
[48] Mercader, I.; Prat, J.; Knobloch, E., The 1:2 mode interaction in rayleigh-Bénard convection with weakly broken midplane symmetry, Int. J. bifurc. chaos, 11, 27-41, (2001)
[49] Depassier, M.C.; Spiegel, E.A., The large-scale structure of compressible convection, Astron. J., 86, 496-512, (1981)
[50] Matthews, P.C.; Hurlburt, N.E.; Proctor, M.R.E.; Brownjohn, D.P., Compressible magnetoconvection in oblique fields: linearized theory and simple nonlinear models, J. fluid mech., 240, 559-569, (1992) · Zbl 0755.76042
[51] Ashwin, P.; Böhmer, K.; Mei, Z., Forced symmetry breaking of homoclinic cycles in a PDE with O(2) symmetry, J. comput. appl. math., 70, 297-310, (1996) · Zbl 0858.65123
[52] Schmiegel, A.; Eckhardt, B., Fractal stability border in plane Couette flow, Phys. rev. lett., 79, 5250-5253, (1997)
[53] Schmiegel, A.; Eckhardt, B., Persistent turbulence in annealed plane Couette flow, Europhys. lett., 51, 395-400, (2000)
[54] L. Brusch, H. Kühne, U. Thiele, M. Bär, Dewetting of thin films on heterogeneous substrates: pinning vs. coarsening, Phys. Rev. E 66 (2002) 011602, 1-5.
[55] Thiele, U.; Brusch, L.; Bestehorn, M.; Bär, M., Modelling thin-film dewetting on structured substrates and templates: bifurcation analysis and numerical simulations, Eur. phys. J. E, 11, 255-271, (2003)
[56] Scheid, B.; Oron, A.; Colinet, P.; Thiele, U.; Legros, J.C., Nonlinear evolution of nonuniformly heated falling liquid films, Phys. fluids, 14, 4130-4151, (2002) · Zbl 1185.76322
[57] Bertozzi, A.L.; Pugh, M.C., Finite-time blow-up of solutions of some long-wave unstable thin film equations, Indiana univ. math. J., 49, 1323-1366, (2000) · Zbl 0978.35007
[58] Kabov, O.A., Heat transfer from a small heater to a falling liquid film, Heat transfer res., 27, 221-226, (1996)
[59] B. Scheid, O.E. Kabov, C. Minetti, P. Colinet, J.C. Legros, Measurement of free surface deformation by reflectance-Schlieren method, in: Proceedings of the Third European Conference on Heat Mass Transfer, Heidelberg, 2000.
[60] Oron, A.; Bankoff, S.G., Dynamics of a condensing liquid film under conjoining/disjoining pressures, Phys. fluids, 13, 1107-1117, (2001) · Zbl 1184.76408
[61] Oron, A.; Bankoff, S.G., Dewetting of a heated surface by an evaporating liquid film under conjoining/disjoining pressures, J. colloid interf. sci., 218, 152-166, (1999)
[62] Sharma, A.; Jameel, A.T., Nonlinear stability, rupture and morphological phase separation of thin fluid films on apolar and polar substrates, J. colloid interf. sci., 161, 190-208, (1993)
[63] Armbruster, D.; Guckenheimer, J.; Holmes, P., Kuramoto – sivashinsky dynamics on the center-unstable manifold, SIAM J. appl. math., 49, 676-691, (1989) · Zbl 0687.34036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.