×

zbMATH — the first resource for mathematics

Mathematical analysis of the multiband BCS gap equations in superconductivity. (English) Zbl 1062.82060
Summary: We present a mathematical analysis for the phonon-dominated multiband isotropic and anisotropic BCS gap equations at any finite temperature \(T\). We establish the existence of a critical temperature \(T_c\) so that, when \(T<T_c\), there exists a unique positive gap solution, representing the superconducting phase; when \(T>T_c\), the only nonnegative gap solution is the zero solution, representing the normal phase. Furthermore, when \(T=T_c\), we prove that the only gap solution is the zero solution and that the positive gap solution depend on the temperature \(T<T_c\) monotonically and continuously. In particular, as \(T\to T_c\), the gap solution tends to zero, which enables us to determine the critical temperature \(T_c\). In the isotropic case where the entries of the interaction matrix \(K\) are all constants, we are able to derive an elegant \(T_c\) equation which says that \(T_c\) depends only on the largest positive eigenvalue of \(K\) but does not depend on the other details of \(K\). In the anisotropic case, we may derive a similar \(T_c\) equation in the context of the Markowitz-Kadanoff model and we prove that the presence of anisotropic fluctuations enhances \(T_c\) as in the single-band case. A special consequence of these results is that the half-unity exponent isotope effect may rigorously be proved in the multiband BCS theory, isotropic or anisotropic.

MSC:
82D55 Statistical mechanical studies of superconductors
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Fröhlich, H., Theory of superconductivity state. I. the ground state at the absolute zero of temperature, Phys. rev., 79, 845-856, (1950) · Zbl 0037.43003
[2] Fröhlich, H., Interaction of electrons with lattice vibrations, Proc. R. soc. A, 215, 291-298, (1952) · Zbl 0047.45501
[3] Maxwell, E., Isotope effect in the superconductivity of Mercury, Phys. rev., 78, 477, (1950)
[4] Reynolds, C.A.; Serin, B.; Wright, W.H.; Nesbitt, L.B., Superconductivity of isotopes of Mercury, Phys. rev., 78, 487, (1950)
[5] Cooper, L.N., Bound electron pairs in degenerate Fermi gas, Phys. rev., 104, 1189-1190, (1956) · Zbl 0074.23705
[6] Bardeen, J.; Cooper, L.N.; Schrieffer, J.R., Theory of superconductivity, Phys. rev., 108, 1175-1204, (1957) · Zbl 0090.45401
[7] Akhiezer, A.I.; Krasil’nikov, V.V.; Peletminskii, S.V.; Yatsenko, A.A., Research on superfluidity and superconductivity on the basis of the Fermi liquid concept, Phys. rep., 245, 1-110, (1994)
[8] Balian, R.; Flocard, H.; Veneroni, M., Variational extensions of BCS theory, Phys. rep., 317, 251-358, (1999)
[9] Kulic, M.L., Interplay of electron – phonon interaction and strong correlation: the possible way to high-temperature superconductivity, Phys. rep., 338, 1-264, (2000)
[10] Yang, Y., On the bardeen – cooper – schrieffer integral equation in the theory of superconductivity, Lett. math. phys., 22, 27-37, (1991) · Zbl 0729.45009
[11] Du, Q.; Yang, Y., The critical temperature and gap solution in the bardeen – cooper – schrieffer theory of superconductivity, Lett. math. phys., 29, 133-150, (1993) · Zbl 0787.65105
[12] McLeod, J.B.; Yang, Y., The uniqueness and approximation of a positive solution of the bardeen – cooper – schrieffer gap equation, J. math. phys., 41, 6007-6025, (2000) · Zbl 1054.82036
[13] Suhl, H.; Matthias, B.T.; Walker, L.R., Bardeen – cooper – schrieffer theory of superconductivity in the case of overlapping bands, Phys. rev. lett., 3, 552-554, (1959) · Zbl 0088.45601
[14] Leggett, A.J., Number-phase fluctuations in two-band superconductors, Prog. theoret. phys., 36, 901-930, (1966)
[15] Geilikman, B.T.; Zaitsev, R.O.; Kresin, V.Z., Properties of superconductors having overlapping bands, Sov. phys.: solid state, 9, 642-647, (1967)
[16] Ketterson, J.B.; Song, S.N., Superconductivity, (1999), Cambridge University Press Cambridge
[17] Kresin, V.Z.; Morawitz, H.; Wolf, S.A., Mechanism of conventional and high \(T_{\text{c}}\) superconductivity, (1993), Oxford University Press Oxford
[18] Horn, R.A.; Johnson, C.R., Matrix analysis, (1985), Cambridge University Press Cambridge · Zbl 0576.15001
[19] Nakajima, S., Paramagnon effect on the BCS transition in he^3, Prog. theoret. phys., 50, 1101-1109, (1973)
[20] Markowitz, D.; Kadanoff, L.P., Effect of impurities upon critical temperature of anisotropic superconductors, Phys. rev., 131, 563-575, (1963)
[21] Leavens, C.R.; Carbotte, J.P., Gap anisotropy in a weak coupling superconductor, Ann. phys., 70, 338-377, (1972)
[22] ()
[23] Rickayzen, G., Theory of superconductivity, (1965), Interscience New York · Zbl 0138.22703
[24] Allen, P.B.; Mitrovic, B., Theory of superconducting \(T_{\text{c}}\), Solid state phys., 37, 1-92, (1982)
[25] Schrieffer, J.R., Theory of superconductivity, (1988), Addison-Wesley New York · Zbl 0125.24102
[26] Tilley, D.R.; Tilley, J., Superfluidity and superconductivity, (1990), IOP Publication New York
[27] Tinkham, M., Introduction to superconductivity, (1996), McGraw-Hill New York
[28] Bogoliubov, N.N.; Tolmachev, V.V.; Shirkov, D.V., A new method in the theory of superconductivity, (), 278-355
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.