×

zbMATH — the first resource for mathematics

Asymptotic results on the existence of 4-RGDDs and uniform 5-GDDs. (English) Zbl 1062.05023
Summary: We continue to investigate the existence of 4-RGDDs and uniform 5-GDDs. It is proved that the necessary conditions for the existence of such designs are also sufficient with a finite number of possible exceptions. As an application, the known results on the existence of uniform 4-frames are also improved.

MSC:
05B05 Combinatorial aspects of block designs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abel, Discrete Math 256 pp 1– (2002)
[2] Abel, Des Codes Cryptogr 26 pp 7– (2002)
[3] Abel, Des Codes Cryptogr 10 pp 275– (1997)
[4] Abel, Discrete Math 262 pp 1– (2003)
[5] Baker, J Combin Theory Ser A 25 pp 193– (1978)
[6] Bennett, J Stat Plann Infer 72 pp 15– (1998)
[7] and Design Theory, 2nd. edition, Cambridge University Press, Cambridge, UK, 1999.
[8] Brouwer, Discrete Math 20 pp 1– (1977)
[9] and CRC handbook of combinatorial designs, CRC Press Inc., Boca Raton, 1996. (New results are reported at http://www.emba.uvm.edu/?dinitz/newresults.html). · doi:10.1201/9781420049954
[10] Colbourn, J Combin Math Combin Comput 23 pp 3– (1997)
[11] and Frames and Resolvable Designs: Uses, Constructions and Existence, CRC Press, Boca Raton FL, 1996. · Zbl 0855.62061
[12] Ge, J Combin Designs 9 pp 28– (2001)
[13] Ge, Discrete Math 243 pp 109– (2002)
[14] Ge, J Combin Designs 9 pp 435– (2001)
[15] Ge, Discrete Math 268 pp 139– (2003)
[16] Ge, J Combin Designs 12 pp 112– (2004)
[17] and Resolvable maximum packings with quadruples, Des Codes Cryptogr (in press).
[18] Ge, Discrete Math 279 pp 225– (2004)
[19] Ge, J Combin Designs 12 pp 132– (2004)
[20] Ge, J Combin Theory Ser A 98 pp 357– (2002)
[21] Hanani, Proc Symp Pure Math (A. M. S.) 19 pp 115– (1971) · doi:10.1090/pspum/019/0321765
[22] Hanani, Discrete Math 11 pp 255– (1975)
[23] Hanani, Discrete Math 3 pp 343– (1972)
[24] Kreher, Discrete Math 261 pp 373– (2003)
[25] Lamken, J Combin Designs 6 pp 431– (1998)
[26] Pairwise Balanced Designs and Related Codes, Ph.D. Thesis, University of Waterloo, Ontaro, 1997.
[27] Miao, J Combin Math Combin Comput 6 pp 33– (1989)
[28] Rees, J Combin Designs 1 pp 15– (1993)
[29] Rees, J Combin Designs 8 pp 363– (2000)
[30] Rees, J Combin Theory Ser A 90 pp 257– (2000)
[31] Rees, Canad J Math 44 pp 1030– (1992) · Zbl 0769.05020 · doi:10.4153/CJM-1992-063-x
[32] Shen, J Combin Math Combin Comput 1 pp 125– (1987)
[33] Shen, Ann Discrete Math 52 pp 511– (1992)
[34] Shen, Discrete Math 254 pp 513– (2002)
[35] Wilson, Discrete Math 9 pp 181– (1974)
[36] Yin, J Combin Designs 5 pp 275– (1997)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.