zbMATH — the first resource for mathematics

The inverse source problem based on the radiative transfer equation in optical molecular imaging. (English) Zbl 1061.65143
Summary: We present the first tomographic reconstruction algorithm for optical molecular imaging that is based on the equation of radiative transfer. The reconstruction code recovers the spatial distribution of fluorescent sources in highly scattering biological tissue. An objective function, which describes the discrepancy of measured near-infrared light with predicted numerical data on the tissue surface, is iteratively minimized to find a solution of the inverse source problem. At each iteration step the predicted data are calculated by a forward model for light propagation based on the equation of radiative transfer. The unknown source distribution is updated along a search direction that is provided by an adjoint differentiation technique.

65R20 Numerical methods for integral equations
45K05 Integro-partial differential equations
92C55 Biomedical imaging and signal processing
Full Text: DOI
[1] Weissleder, R.; Mahmood, U., Molecular imaging, Radiology, 219, 316, (2001)
[2] Contag, P.R., Whole-animal cellular and molecular imaging to accelerate drug development, Drug discovery today, 7, 555, (2002)
[3] Gillies, R.J., In vivo molecular imaging, J. cell. biochem. suppl., 39, 231, (2002)
[4] Massoud, T.F.; Gambhir, S.S., Molecular imaging in living subjects: seeing fundamental biological processes in a new light, Genes dev., 17, 545, (2003)
[5] Blasberg, R.G., Molecular imaging and cancer, Mol. cancer therap., 2, 335, (2003)
[6] Blasberg, R.G.; Tjuvajev, J.G., Molecular-genetic imaging: current and future perspectives, J. clin. invest., 111, 1620, (2003)
[7] Cherry, S.R., In vivo molecular imaging and genomic imaging: new challenges for imaging physics, Phys. med. biol., 49, R13, (2004)
[8] Piwnica-Worms, D.; Schuster, D.P.; Garbow, J.R., Molecular imaging of host-pathogen interactions in intact small animals, Cell. microbiol., 6, 319, (2004)
[9] Allport, J.; Weissleder, R., In vivo imaging of gene and cell therapies, Exp. hematol., 29, 1237, (2001)
[10] Bremer, C.; Ntziachristos, V.; Weissleder, R., Optical-based molecular imaging: contrast agents and potential medical applications, Eur. radiol., 13, 231, (2001)
[11] Bornhop, D.J.; Contag, C.H.; Licha, K.; Murphy, C.J., Advances in contrast agents, reporters, and detection, J. biomed. opt., 6, 106, (2001)
[12] Licha, K., Contrast agents for optical imaging, (), 1-29
[13] Weissleder, R.; Ntziachristos, V., Shedding light onto live molecular targets, Nat. med., 9, 123, (2003)
[14] Choy, G.; Choyke, P.; Libutti, S.K., Current advances in molecular imaging: noninvasive in vivo bioluminescent and fluorescent optical imaging in cancer research, Mol. imaging, 2, 303, (2003)
[15] Bugaj, J.E.; Achilefu, S.; Dorshow, R.B.; Rajagopalan, R., Novel fluorescent contrast agents for optical imaging of in vivo tumors based on a receptor-targeted Dye-peptide conjugate platform, J. biomed. opt., 6, 122, (2001)
[16] Becker, A.; Hessenius, C.; Licha, K.; Ebert, B.; Sukowski, U.; Semmler, W.; Wiedenmann, B.; Grötzinger, C., Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands, Nat. biotechnol., 19, 327, (2001)
[17] Daly, C.J.; McGrath, J.C., Fluorescent ligands, antibodies, and proteins for the study of receptors, Pharmacol. therap., 100, 101, (2003)
[18] Weissleder, R.; Tung, C.-H.; Mahmood, U.; Bogdanov, A., In vivo imaging of tumors with protease-activated near-infrared fluorescent probes, Nat. biotechnol., 17, 375, (1999)
[19] Ntziachristos, V.; Tung, C.H.; Bremer, C.; Weissleder, R., Fluorescence molecular tomography resolves protease activity in vivo, Nat. med., 8, 757, (2002)
[20] Ntziachristos, V.; Bremer, R.; Weissleder, R., Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging, Eur. radiol., 13, 195, (2003)
[21] Wunderbaldiger, P.; Bogdanov, A.; Weissleder, R., New approaches for imaging in gene therapy, Eur. J. radiol., 34, 156, (2000)
[22] Rice, B.W.; Cable, M.D.; Nelson, M.B., In vivo imaging of light-emitting probes, J. biomed. opt., 6, 432, (2001)
[23] Chen, Y.; Zheng, G.; Zhang, Z.H.; Blessington, D.; Zhang, M.; Li, H.; Liu, Q.; Zhou, L.; Intes, X.; Achilefu, S.; Chance, B., Metabolism-enhanced tumor localization by fluorescence imaging: in vivo animal studies, Opt. lett., 28, 2070, (2003)
[24] Natterer, F., Mathematical models for medical imaging, (), 17-32 · Zbl 0938.92023
[25] McCormick, N.J., Inverse radiative transfer problems: a review, Nucl. sci. eng., 112, 185, (1992)
[26] Larsen, E.W., The inverse source problem in radiative transfer, J. quant. spectrosc. radiat. transfer, 15, 1, (1975)
[27] Yi, H.C.; Sanchez, R.; McCormick, N.J., Bioluminescence estimation from Ocean in situ irradiances, Appl. opt., 31, 822, (1992)
[28] Siewert, C.E., An inverse source problem in radiative transfer, J. quant. spectrosc. radiat. transfer, 50, 603, (1993)
[29] Siewert, C.E., A radiative-transfer inverse-source problem for a sphere, J. quant. spectrosc. radiat. transfer, 52, 157, (1994)
[30] McCormick, N.J., Unified approach to analytical solutions of three inverse transport problems, Prog. nucl. energy, 34, 425, (1999)
[31] Li, H.Y.; Ozisik, M.N., Estimation of the radiation source term with a conjugate-gradient method of inverse analysis, J. quant. spectrosc. radiat. transfer, 48, 237, (1992)
[32] Tao, Z.; McCormick, N.J.; Sanchez, R., Ocean source and optical property estimation from explicit and implicit algorithms, Appl. opt., 33, 3265, (1994)
[33] Stephany, S.; de Campos Velho, H.F.; Ramos, F.M.; Mobley, C.D., Identification of inherent optical properties and bioluminescence source term in a hydrologic optics problem, J. quant. spectrosc. radiat. transfer, 67, 113, (2000)
[34] Li, H.Y., A two-dimensional cylindrical inverse source problem in radiative transfer, J. quant. spectrosc. radiat. transfer, 69, 403, (2001)
[35] Park, H.M.; Yoo, D.H., A multidimensional inverse radiation problem of estimating the strength of a heat source in participating media, Int. J. heat mass transfer, 44, 2949, (2001) · Zbl 1014.80007
[36] Su, J.; Silva Neto, A.J., Two-dimensional inverse heat conduction problem of source strength estimation in cylindrical rods, Appl. math. modeling, 25, 861, (2001) · Zbl 0992.80009
[37] Paithankar, D.Y.; Chen, A.U.; Pogue, B.W.; Patterson, M.S.; Sevick-Muraca, E.M., Imaging of fluorescent yield and lifetime from multiply scattered light reemitted from random media, Appl. opt., 36, 2260, (1997)
[38] Chang, J.; Graber, H.L.; Barbour, R.L., Imaging of fluorescence in highly scattering media, IEEE trans. biomed. eng., 44, 810, (1997)
[39] Jiang, H., Frequency-domain fluorescent diffusion tomography: a finite-element-based algorithm and simulations, Appl. opt., 37, 5337, (1998)
[40] Chang, J.; Graber, H.L.; Barbour, R.L., Luminescence optical tomography of dense scattering media, J. opt. soc. am. A, 14, 288, (1997)
[41] Roy, R.; Sevick-Muraca, E.M., A numerical study of gradient-based nonlinear optimization methods for contrast enhanced optical tomography, Opt. exp., 9, 49, (2001)
[42] Lee, J.; Sevick-Muraca, E.M., Fluorescence-enhanced absorption imaging using frequency-domain photon migration: tolerance to measurement error, J. biomed. opt., 6, 58, (2001)
[43] O’Leary, M.A.; Boas, D.A.; Li, X.D.; Chance, B.; Yodh, A.G., Fluorescence lifetime imaging in turbid media, Opt. lett., 21, 158, (1996)
[44] Ntziachristos, V.; Weissleder, R., Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation, Opt. lett., 26, 893, (2001)
[45] Lee, J.; Sevick-Muraca, E.M.; Three-dimensional fluorescence enhanced optical tomography using referenced frequency-domain photon migration measurements at emission and excitation wavelengths, J. opt. soc. am. A, 19, 759, (2002)
[46] Eppstein, M.J.; Hawrysz, D.J.; Godavarty, A.; SevickMuraca, E.M., Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: near-infrared fluorescence tomography, Pnas, 99, 9619, (2002) · Zbl 1032.92022
[47] Ntziachristos, V.; Weissleder, R., Charge-coupled-device based scanner for tomography of fluorescent near-infrared probes in turbid media, Med. phys., 29, 803, (2002)
[48] Milstein, A.B.; Oh, S.; Webb, K.J.; Bouman, C.A.; Zhang, Q.; Boas, D.A.; Millane, R.P., Fluorescence optical diffusion tomography, Appl. opt., 42, 3081, (2003)
[49] Kim, A.D.; Ishimaru, A., Optical diffusion of continuous-wave, pulsed, and density waves in scattering media and comparisons with radiative transfer, Appl. opt., 37, 5313, (1998)
[50] Aronson, R.; Corngold, N., Photon diffusion coefficient in an absorbing medium, J. opt. soc. am. A, 16, 1066, (1999)
[51] Chen, B.; Stamnes, K.; Stamnes, J.J., Validity of the diffusion approximation in bio-optical imaging, Appl. opt., 40, 6356, (2001)
[52] Elaloufi, R.; Carminati, R.; Greffet, J.-J., Time-dependent transport through scattering media: from radiative transfer to diffusion, J. opt. A, 4, S103, (2002)
[53] Hielscher, A.H.; Klose, A.D.; Hanson, K.M., Gradient-based iterative image reconstruction scheme for time-resolved optical tomography, IEEE trans. med. imaging, 18, 262, (1999)
[54] Klose, A.D.; Hielscher, A.H., Iterative reconstruction scheme for optical tomography based on the equation of radiative transfer, Med. phys., 26, 1698, (1999)
[55] Klose, A.D.; Hielscher, A.H., Optical tomography using the time-independent equation of radiative transfer. part II: inverse model, J. quant. spectrosc. radiat. transfer, 72, 715, (2002)
[56] Klose, A.D.; Hielscher, A.H., Quasi-Newton methods in optical tomographic image reconstruction, Inverse problems, 19, 387, (2003) · Zbl 1022.65142
[57] Klose, A.D.; Hielscher, A.H., Fluorescence tomography with simulated data based on the equation of radiative transfer, Opt. lett., 28, 1019, (2003)
[58] Groenhuis, R.A.J.; Ferwerda, H.A.; Ten Bosch, J.J., Scattering and absorption of turbid materials determined from reflection measurements. 1: theory, Appl. opt., 22, 2456, (1983)
[59] Cheong, W.F.; Prahl, S.A.; Welch, A.J., A review of the optical properties of biological tissues, IEEE J. quantum electron., 26, 2166, (1990)
[60] Prahl, S.A.; van Gemert, M.J.C.; Welch, A.J., Determining the optical properties of turbid media by using the adding-doubling method, Appl. opt., 32, 559, (1993)
[61] Born, M.; Wolf, E., Principles of optics, (1999), Cambridge University Press Cambridge, MA
[62] Duderstadt, J.J.; Martin, W.R., Transport theory, (1979), Wiley New York · Zbl 0407.76001
[63] Chandrasekhar, S., Radiative transfer, (1960), Oxford University Press London · Zbl 0037.43201
[64] Case, K.M.; Zweifel, P.F., Linear transport theory, (1967), Addison-Wesley Massachusetts · Zbl 0132.44902
[65] Lewis, E.E.; Miller, W.F., Computational methods of neutron transport, (1984), Wiley New York · Zbl 0594.65096
[66] Carlson, B.G.; Lathrop, K.D., Transport theory - the method of discrete ordinates, (), 166-266
[67] Sanchez, R.; McCormick, N.J., A review of neutron transport approximations, Nucl. sci. eng., 80, 481, (1982)
[68] Adams, M.L.; Larsen, E.W., Fast iterative methods for discrete-ordinates particle transport calculations, Prog. nucl. energy, 40, 3, (2002)
[69] Thynell, S.T, Discrete-ordinates method in radiative heat transfer, Int. J. eng. sci., 36, 1651, (1998) · Zbl 1210.85009
[70] Ramankutty, M.A.; Crosbie, A.L., Modified discrete ordinates solution of radiative transfer in two-dimensional rectangular enclosures, J. quant. spectrosc. radiat. transfer, 57, 107, (1997)
[71] Koch, R.; Krebs, W.; Wittig, S.; Viskanta, R., Discrete ordinates quadrature schemes for multidimensional radiative transfer, J. quant. spectrosc. radiat. transfer, 53, 353, (1995)
[72] Brown, P.N.; Chang, B.; Hanebutte, U.R., Spherical harmonic solutions of the Boltzmann transport equation via discrete ordinates, Prog. nucl. energy, 39, 263, (2001)
[73] Stenholm, L.G.; Stoerzer, H.; Wehrse, R., An efficient method for the solution of 3-D radiative transfer problems, J. quant. spectrosc. radiat. transfer, 45, 47, (1991)
[74] Wilson, S.J.; Tan, T.S., Radiative transfer in a two-dimensional rectangular annulus medium, Math. comput. modeling, 24, 29, (1996) · Zbl 0881.65142
[75] Klose, A.D.; Hielscher, A.H., Modeling photon propagation in anisotropically scattering media with the equation of radiative transfer, (), 624-633
[76] Wiscombe, W.J., The delta-M method: rapid yet accurate radiative flux calculations for strongly asymmetric phase functions, J. atmos. sci., 34, 1408, (1977)
[77] Welch, A.J.; van Gemert, M.J.C., Optical-thermal response of laser-irradiated tissue, (1995), Plenum Press London
[78] Arridge, S.R., Optical tomography in medical imaging, Inverse problems, 15, R41, (1999) · Zbl 0926.35155
[79] Nash, S.G., Linear and nonlinear programming, (1996), McGraw-Hill New York
[80] Nocedal, J.; Wright, S.J., Numerical optimization, (1999), Springer New York · Zbl 0930.65067
[81] Luenberger, D.G., Linear and nonlinear programming, (1984), Addison-Wesley Reading, MA · Zbl 0241.90052
[82] Bishop, Ch.M., Neural networks for pattern recognition, (1997), Clarendon Press Oxford
[83] Marchuk, G.I., Adjoint equations and analysis of complex systems, (1995), Kluwer Academic Publishers Dordrecht
[84] Errico, M.E., What is an adjoint model?, Bull. am. meteorol. soc., 78, 2577, (1997)
[85] Wengert, R.E., A simple automatic derivative evaluation program, Commun. ACM, 7, 463, (1964) · Zbl 0131.34602
[86] Rall, L.B., Automatic differentiation: techniques and applications, Lecture notes in computer science 120, (1981), Springer Berlin · Zbl 0473.68025
[87] Rall, L.B.; Corliss, G.F., An introduction to automatic differentiation, (), 1-18 · Zbl 0940.65019
[88] Talagrand, O., The use of adjoint equations in numerical modeling of atmospheric circulation, (), 169-180 · Zbl 0761.76077
[89] Beck, T., Automatic differentiation of iterative processes, J. comput. appl. math., 50, 109, (1994) · Zbl 0806.65012
[90] Giering, R.; Kaminski, T., Recipes of adjoint code construction, ACM trans. math. software, 24, 437, (1998) · Zbl 0934.65027
[91] Hanson, K.M.; Cunningham, G.S.; Saquib, S.S., Inversion based on computational simulations, (), 121-135 · Zbl 0913.65144
[92] Kaminski, T.; Heimann, M.; Giering, R., A coarse grid three-dimensional global inverse model of atmospheric transport. 1. adjoint model and Jacobian matrix, J. geophys. res., 104, 18535, (1999)
[93] Norton, S.J., Iterative inverse scattering algorithms: methods of computing frechet derivatives, J. acoust. soc. am., 106, 2653, (1999)
[94] Coleman, T.F.; Santosa, F.; Verma, A., Efficient calculation of Jacobian and adjoint vector products in the wave propagational inverse problem using automatic differentiation, J. comput. phys., 157, 234, (2000) · Zbl 0947.65104
[95] Ustinov, E.A., Adjoint sensitivity analysis of radiative transfer equation: temperature and gas mixing ratio weighting functions for remote sensing of scattering atmospheres in thermal IR, J. quantum spectrosc. radiat. transfer, 68, 195, (2001)
[96] Polonsky, I.N.; Box, M.A.; Davis, A.B., Radiative transfer through inhomogeneous turbid media: implementation of the adjoint perturbation approach at the first order, J. quant. spectrosc. transfer, 78, 85, (2003)
[97] Graves, E.E.; Ripoll, J.; Weissleder, R.; Ntziachristos, V., Sub-millimeter resolution molecular imaging system for small animal imaging, Med. phys., 30, 901, (2003)
[98] Roy, R.; Godavarty, A.; SevickMuraca, E.M., Fluorescence-enhanced optical tomography using referenced measurements of heterogeneous media, IEEE trans. med. imaging, 22, 824, (2003)
[99] Godavarty, A.; Eppstein, M.J.; Zhang, C.; Theru, S.; Thompson, A.B.; Gurfinkel, M.; Sevick-Muraca, E.M., Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera, Phys. med. biol., 48, 1701, (2003)
[100] Chai, J.C.; Lee, H.S.; Patankar, S.V., Ray effect and false scattering in the discrete ordinates method, Numer. heat transfer B, 24, 373, (1993)
[101] Hielscher, A.H.; Alcouffe, R.E.; Barbour, R.L., Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues, Phys. med. biol., 43, 1285, (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.