zbMATH — the first resource for mathematics

Testing monotone effects of covariates in nonparametric mixed models. (English) Zbl 1061.62068
Summary: In a multi-factorial nonparametric mixed model, an asymptotic rank-based test on monotone influence of a covariate is developed. Most methods available in the literature cannot handle data with ties or dependent observations. The procedure proposed here does not assume continuous distributions and is thus applicable to data with ties. It can be used even for ordinal or binary data. Also, it can handle dependent observation, as, for example, in longitudinal data. Moreover, the test developed in this paper, as well as the estimate of the regression parameter for the covariate, is easy to compute and does not require iterative algorithms. The method proposed here contains the test based on Spearman’s rank correlation coefficient as a special case. The finite sample performance of the test procedure is analyzed by computer simulations. Some examples illustrate the application.

62G10 Nonparametric hypothesis testing
62J10 Analysis of variance and covariance (ANOVA)
62G20 Asymptotic properties of nonparametric inference
62G08 Nonparametric regression and quantile regression
Full Text: DOI
[1] DOI: 10.2307/2291230 · Zbl 0793.62025
[2] DOI: 10.1016/0378-3758(94)00002-6 · Zbl 0816.62035
[3] Brunner E., Handbook of Statistics 13 (1996)
[4] DOI: 10.1016/S0378-3758(01)00230-0 · Zbl 0988.62048
[5] DOI: 10.1016/S0378-3758(96)00177-2 · Zbl 0872.62051
[6] DOI: 10.2307/2291470 · Zbl 0890.62038
[7] DOI: 10.1006/jmva.1999.1821 · Zbl 0955.62043
[8] Deuchler G., Zeitschrift für Pädagogische Psychologie und Experimentelle Pädagogik 15 pp 114– (1914)
[9] DOI: 10.2307/3001968
[10] DOI: 10.1214/aoms/1177730491 · Zbl 0041.26103
[11] DOI: 10.2307/1412159
[12] Fraser D. A.S., Nonparametric Methods in Statistics (1957) · Zbl 0077.12903
[13] Langer F., Berücksichtigung von kovariablen in nichtparametrischen gemischten Modellen (1998)
[14] Behnen K., Rank Tests with Estimated Scores and Their Applications (1989) · Zbl 0692.62041
[15] Büning H., Nichtparametrische Statistische Methoden, 2. ed. (1994)
[16] Aitkin M., Statistical Modelling in GLIM (1989) · Zbl 0676.62001
[17] Hand D. J., A Handbook of Small Data Sets (1994) · Zbl 0949.62500
[18] Leppik I. E., Neurology 37 pp 963– (1987)
[19] DOI: 10.2307/2532086 · Zbl 0712.62048
[20] DOI: 10.2307/2683334 · Zbl 0317.62036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.