×

zbMATH — the first resource for mathematics

Belov-Chaltikian and Blaszak-Marciniak lattice equations: recursion operators and factorization. (English) Zbl 1061.37051
Summary: A systematic investigation on the construction of recursion operators for partial differential-difference equations (PDDEs) with two independent variables (one continuous and one discrete) using its generalized symmetries is presented. Also it is explained how to factorize the obtained recursion operators. The applicability of the above procedure have been illustrated for the relativistic toda (RT), Belov-Chaltikian (BC) and Blaszak-Marciniak (BM) lattice equations and shown that the former two lattice equations admit \((2\times 2)\) matrix recursion operators while the latter one possesses a \((3\times 3)\) matrix recursion operator. Furthermore, the constructed recursion operators can be written as a factor of 2 distinct invertible matrix operators in each of the lattice equations. It is also proved explicitly that the factorized operators are Hamiltonian and hence RT, BC and BM lattice equations are bi-Hamiltonian systems.

MSC:
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
37K60 Lattice dynamics; integrable lattice equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] M. J. Ablowitz and H. Segur,Solitons and the Inverse Scattering Transform(SIAM, Philadelphia, 1981); · Zbl 0472.35002
[2] M. J. Ablowitz and P. A. Clarkson,Nonlinear Evolution Equations and Inverse Scattering(Cambridge U. P., Cambridge, UK, 1991). · Zbl 0762.35001
[3] Weiss, J. Math. Phys. 24 pp 522– (1983)
[4] Fuchssteiner, Prog. Theor. Phys. 70 pp 508– (1983)
[5] Fokas, Stud. Appl. Math. 77 pp 253– (1987) · Zbl 0639.35075
[6] Fan, J. Math. Phys. 42 pp 4327– (2001)
[7] P. J. Olver,Applications of Lie Groups to Differential Equations(Springer, New York, 1993). · Zbl 0785.58003
[8] A. V. Mikhailov, A. B. Shabat, and R. I. Yamilov, ”The symmetry approach to classification of integrable equations,” inWhat is integrability? (Springer-Verlag, New York, 1990), pp. 115.
[9] Lakshmanan, J. Math. Phys. 26 pp 1189– (1985)
[10] Fokas, Stud. Appl. Math. 75 pp 179– (1986) · Zbl 0613.35073
[11] Magri, IMA J. Math. Phys 19 pp 1156– (1979)
[12] Fokas, Lett. Nuovo Cimento Soc. Ital. Fis. 28 pp 299– (1980)
[13] Aiyer, Phys. Lett. A 93 pp 368– (1983)
[14] Fuchssteiner, Nonlinear Anal. 3 pp 849– (1979)
[15] Oevel, Phys. Lett. A 88 pp 323– (1982)
[16] Gurses, Phys. Lett. A 251 pp 247– (1999)
[17] J. A. Sanders and J. P. Wang, ”On the integrability of polynomial scalar evolution equations,” Technical report WS-476, Vrije University, Amsterdam (1997).
[18] Grammaticos, Phys. Rev. Lett. 67 pp 1825– (1991)
[19] Capel, Phys. Lett. A 155 pp 371– (1991)
[20] Joshi, Lett. Math. Phys. 26 pp 123– (1992)
[21] Goktas, Adv. Comput. Math. 11 pp 55– (1999)
[22] Sahadevan, J. Math. Phys. 42 pp 3854– (2001)
[23] Levi, J. Math. Phys. 38 pp 6648– (1997)
[24] Shabat, Leningrad Math. J. 2 pp 377– (1991)
[25] R. Yamilov,Classification of Toda type Scalar lattices, in Proc. Eighth International Workshop on Nonlinear Evolution Equations and Dynamical Systems (World Scientific, Singapore, 1993), p. 423.
[26] Oevel, Prog. Theor. Phys. 81 pp 294– (1989)
[27] Leo, Lett. Math. Phys. 8 pp 267– (1984)
[28] B. Fuchssteiner and W. X. Ma, ”An approach to master symmetries of lattice equations,” inSymmetries and Integrability of Difference Equations(Cambridge U. P., London, 1999) p. 247.
[29] Oevel, Prog. Theor. Phys. 81 pp 294– (1989)
[30] Tamizhmani, J. Phys. Soc. Jpn. 69 pp 351– (2000)
[31] Belov, Phys. Lett. B 309 pp 268– (1993)
[32] Blaszak, J. Math. Phys. 35 pp 4661– (1994)
[33] Oevel, J. Math. Phys. 30 pp 2664– (1989)
[34] J. A. Sanders and J. P. Wang, talk delivered during the Euro Workshop ”Discrete Systems and Integrability” held at the Isaac Newton Institute for Mathematical Sciences, University of Cambridge, Cambridge, UK.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.