zbMATH — the first resource for mathematics

The stability of supply chains. (English) Zbl 1060.91500
Summary: A continuous time version of the well-known beer game model is derived and its stability and robust stability properties are investigated. Novelty originates from the treatment of pure process delays rather than exponential lags and it is shown that this can lead to diametrically different dynamics to the exponential lag case. The stability properties of the system are shown to support and quantify the qualitative empirical results of the beer game. Additional insight into the influence of certain model parameters is attained by their interpretation as the degree of mismatch in a Smith predictor regulator. The transient inability to supply all that is demanded is mimicked and shown to constitute an influential source of demand amplification. The analytical nature of these calculations engenders the capacity to improve supply chain dynamics through the synthesis and calibration of strategic supply chain trade-off problems.

91-XX Game theory, economics, finance, and other social and behavioral sciences
Full Text: DOI
[1] DOI: 10.1287/mnsc.14.9.600 · doi:10.1287/mnsc.14.9.600
[2] BELLMAN R., Differential-Difference Equations (1963) · Zbl 0105.06402
[3] FORRESTER J. W., Industrial Dynamics (1961)
[4] FORRESTER J. W., World Dynamics (1973)
[5] DOI: 10.1016/0925-5273(96)00052-7 · doi:10.1016/0925-5273(96)00052-7
[6] HOULIHAN J. B., Int. J. Pys. Dist. Mat. Man 17 pp 51– (1987)
[7] JOHN S., International Journal of Management Systems Design 1 pp 283– (1994)
[8] DOI: 10.1287/mnsc.43.4.546 · Zbl 0888.90047 · doi:10.1287/mnsc.43.4.546
[9] LEWIS, J. C., NAIM, M. M. and TOWILL, D. R. Re-engineering the supply chain interface-an integrated approach. 2nd International Conference on Logistics. Nottingham, UK. pp.329–335.
[10] MACDONALD N., Time Lags in Biological Models (1978) · Zbl 0403.92020
[11] MARSHALL J. E., Control of Time Delay Systems (1979) · Zbl 0452.93002
[12] NICULESCU S.-L., Stability and Control of Time Delay Systems, LNCIS 228 pp 1– (1997)
[13] DOI: 10.1080/002077200412122 · Zbl 1080.93603 · doi:10.1080/002077200412122
[14] DOI: 10.2307/1907849 · Zbl 0046.37804 · doi:10.2307/1907849
[15] DOI: 10.1287/mnsc.33.12.1572 · doi:10.1287/mnsc.33.12.1572
[16] DOI: 10.1287/mnsc.35.3.321 · doi:10.1287/mnsc.35.3.321
[17] DOI: 10.1080/09511929108944496 · doi:10.1080/09511929108944496
[18] DOI: 10.1243/PIME_PROC_1992_206_080_02 · doi:10.1243/PIME_PROC_1992_206_080_02
[19] DOI: 10.1080/09537289408919474 · doi:10.1080/09537289408919474
[20] DOI: 10.1016/0925-5273(91)90099-F · doi:10.1016/0925-5273(91)90099-F
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.