×

zbMATH — the first resource for mathematics

Operational design of a supply chain system using the Taguchi method, response surface methodology, simulation, and optimization. (English) Zbl 1060.90048
Summary: Managing a supply chain to meet an organization’s objectives is a challenge to many firms. It involves collaboration in multiple dimensions, such as cooperation, information sharing, and capacity planning. In this research, we focus on identifying the ’best’ operating conditions for a supply chain. We propose a hybrid approach that incorporates simulation, Taguchi techniques, and response surface methodology to examine the interactions among the factors, and to search for the combination of factor levels throughout the supply chain to achieve the ’optimal’ performance. This study makes it possible for firms to understand the dynamic relations among various factors, and provides guidelines for management to minimize the impact of demand uncertainty on the performance of the supply chain. The results help the manufacturer determine the proper plant capacity and adopt the right level of delayed differentiation strategy for its products. We also quantify the potential gains of cooperation among different members of the supply chain. Using such knowledge, a manufacturer can develop an appropriate incentive plan to motivate the retailers and suppliers to collaborate, and to realize the potential of the entire supply chain.

MSC:
90B35 Deterministic scheduling theory in operations research
90B30 Production models
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1287/inte.25.1.69 · doi:10.1287/inte.25.1.69
[2] DOI: 10.1287/mnsc.15.5.215 · Zbl 1231.91323 · doi:10.1287/mnsc.15.5.215
[3] DOI: 10.1111/j.1540-5915.1998.tb01357.x · doi:10.1111/j.1540-5915.1998.tb01357.x
[4] DOI: 10.1021/i260054a010 · doi:10.1021/i260054a010
[5] Biles WE, Optimization and Industrial Experimentation (1980)
[6] DOI: 10.1287/mnsc.46.8.1032.12029 · Zbl 1232.90028 · doi:10.1287/mnsc.46.8.1032.12029
[7] Chan F, Integrated Manufacturing Systems 13 pp 117– (2001) · doi:10.1108/09576060210415455
[8] Clay H, Logistics Focus 7 (1999)
[9] DOI: 10.1080/05695558208975241 · doi:10.1080/05695558208975241
[10] DOI: 10.1287/opre.36.2.216 · doi:10.1287/opre.36.2.216
[11] Derringer G, Journal of Quality Technology 12 pp 214– (1980)
[12] Design-Expert 2000 Stat-Ease, Inc. 2021 East Hennepin Avenue, Suite 191 Minneapolis MN 55413-723
[13] Garg A, IIE Transactions pp 641– (1997)
[14] Gavirneni S, Carnegie Mellon University (1997)
[15] DOI: 10.1287/mnsc.45.1.16 · Zbl 1231.90088 · doi:10.1287/mnsc.45.1.16
[16] DOI: 10.1287/mnsc.41.10.1599 · Zbl 0870.90052 · doi:10.1287/mnsc.41.10.1599
[17] Hewitt F, International Journal of Technology Management 17 (1999)
[18] Jain N, Department of Management, University of Texas at Austin (1998)
[19] DOI: 10.1016/S0040-1625(97)00102-9 · doi:10.1016/S0040-1625(97)00102-9
[20] Lawrence KD, New Product Forecasting pp pp. 529–541– (1981)
[21] DOI: 10.1287/inte.23.4.1 · doi:10.1287/inte.23.4.1
[22] Lee H, Management Science 43 (1994)
[23] DOI: 10.1016/0377-2217(94)00065-K · Zbl 0914.90193 · doi:10.1016/0377-2217(94)00065-K
[24] DOI: 10.1049/me:19970408 · doi:10.1049/me:19970408
[25] DOI: 10.1108/09576059810209964 · doi:10.1108/09576059810209964
[26] DOI: 10.1016/0360-8352(91)90088-N · doi:10.1016/0360-8352(91)90088-N
[27] Montgomery DC, Design and Analysis of Experiments (2001)
[28] Myers RH, Response Surface Methodology: Process and Product Optimization Using Designed Experiments (1995) · Zbl 1161.62392
[29] DOI: 10.1016/S0377-2217(98)00058-7 · Zbl 0937.90047 · doi:10.1016/S0377-2217(98)00058-7
[30] Poirier CC, Supply Chain Optimization: Building the Strongest Total Business Network (1996)
[31] Rockwell Software 2003 The Park Building 504 Beaver Street Sewickley, PA, 15143 USA
[32] Rustagi JS, Quality Through Engineering Design (1993)
[33] DOI: 10.1080/00207549508904825 · Zbl 0909.90167 · doi:10.1080/00207549508904825
[34] DOI: 10.1080/002075498193147 · Zbl 0940.90507 · doi:10.1080/002075498193147
[35] Spekman RE, Business Horizons pp pp. 80–81– (1988)
[36] Strader TJ, Journal of Global Information Management 7 (1999)
[37] Swaminathan JM, Management Science pp 161– (1998)
[38] Taguchi G, Introduction to Quality Engineering (1986)
[39] DOI: 10.1016/0737-6782(85)90015-3 · doi:10.1016/0737-6782(85)90015-3
[40] Tompkins JA, Transportation and Distribution 39 (1998)
[41] DOI: 10.1016/0377-2217(96)00080-X · Zbl 0955.90502 · doi:10.1016/0377-2217(96)00080-X
[42] DOI: 10.1080/00207540110079121 · Zbl 1060.90637 · doi:10.1080/00207540110079121
[43] DOI: 10.1287/opre.38.2.296 · Zbl 0735.90036 · doi:10.1287/opre.38.2.296
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.