×

zbMATH — the first resource for mathematics

The thermodynamics of black holes. (English) Zbl 1060.83041
Summary: We review the present status of black hole thermodynamics. Our review includes discussion of classical black hole thermodynamics, Hawking radiation from black holes, the generalized second law, and the issue of entropy bounds. A brief survey also is given of approaches to the calculation of black hole entropy. We conclude with a discussion of some unresolved open issues.

MSC:
83C57 Black holes
85A05 Galactic and stellar dynamics
85A40 Astrophysical cosmology
PDF BibTeX XML Cite
Full Text: DOI Link EuDML arXiv
References:
[1] Aizenman, M.; Lieb, EH, The Third Law of Thermodynamics and the Degeneracy of the Ground State for Lattice Systems, J. Stat. Phys., 24, 279-297, (1981)
[2] Anderson, W.; Pullin, J. (ed.), Does the GSL Imply an Entropy Bound?, (1999)
[3] Ashtekar, A.; Baez, J.; Corichi, A.; Krasnov, K., Quantum Geometry and Black Hole Entropy, Phys. Rev. Lett., 80, 904-907, (1998) · Zbl 0949.83024
[4] Ashtekar, A.; Beetle, C.; Dreyer, O.; Fairhurst, S.; Krishnan, B.; Lewandowski, J.; Wisniewski, J., Generic Isolated Horizons and their Applications, Phys. Rev. Lett., 85, 3564-3567, (2000) · Zbl 1369.83036
[5] Ashtekar, A.; Beetle, C.; Fairhurst, S., Isolated Horizons: A Generalization of Black Hole Mechanics, Class. Quantum Grav., 16, l1-l7, (1999) · Zbl 0947.83027
[6] Ashtekar, A.; Beetle, C.; Fairhurst, S., Mechanics of Isolated Horizons, Class. Quantum Grav., 17, 253-298, (2000) · Zbl 0948.83001
[7] Ashtekar, A.; Corichi, A., Laws Governing Isolated Horizons: Inclusion of Dilaton Couplings, Class. Quantum Grav., 17, 1317-1332, (2000) · Zbl 0983.83018
[8] Ashtekar, A.; Corichi, A.; Krasnov, K., Isolated Horizons: the Classical Phase Space, Adv. Theor. Math. Phys., 3, 419-478, (2000) · Zbl 0983.83017
[9] Ashtekar, A.; Fairhurst, S.; Krishnan, B., Isolated Horizons: Hamiltonian Evolution and the First Law, Phys. Rev. D, 62, 104025, (2000)
[10] Ashtekar, A.; Krasnov, K.; Iyer, BR (ed.); Bhawal, B. (ed.), Quantum Geometry and Black Holes, 149-170, (1999), Dordrecht · Zbl 0948.83033
[11] Banks, T.; Susskind, L.; Peskin, ME, Diffculties for the Evolution of Pure States into Mixed States, Nucl. Phys. B, 244, 125-134, (1984)
[12] Bardeen, JM; Carter, B.; Hawking, SW, The Four Laws of Black Hole Mechanics, Commun. Math. Phys., 31, 161-170, (1973) · Zbl 1125.83309
[13] Bekenstein, J.D., “On Page’s examples challenging the entropy bound”, (June, 2000), [Online Los Alamos Archive Preprint]: cited on 6 April 2001, http://arxiv.org/abs/gr-qc/0006003. 4.2
[14] Bekenstein, JD, Black Holes and Entropy, Phys. Rev. D, 7, 2333-2346, (1973) · Zbl 1369.83037
[15] Bekenstein, JD, Generalized Second Law of Thermodynamics in Black-Hole Physics, Phys. Rev. D, 9, 3292-3300, (1974)
[16] Bekenstein, JD, Universal Upper Bound on the Entropy-to-Energy Ratio for Bounded Systems, Phys. Rev. D, 23, 287-298, (1981)
[17] Bekenstein, JD, Entropy Bounds and the Second Law for Black Holes, Phys. Rev. D, 27, 2262-2270, (1983)
[18] Bekenstein, JD, Entropy Content and Information Flow in Systems with Limited Energy, Phys. Rev. D, 30, 1669-1679, (1984)
[19] Bekenstein, JD, Entropy Bounds and Black Hole Remnants, Phys. Rev. D, 49, 1912-1921, (1994)
[20] Bekenstein, JD; Jantzen, RT (ed.); Mac Keiser, G. (ed.), Do We Understand Black Hole Entropy?, 39-58, (1996), Singapore
[21] Bekenstein, JD, Non-Archimedian Character of Quantum Buoyancy and the Generalized Second Law of Thermodynamics, Phys. Rev. D, 60, 124010/9, (1999)
[22] Bekenstein, JD; Schiffer, M., Quantum Limitations on the Storage and Transmission of Information, Int. J. Mod. Phys. C, 1, 355, (1990) · Zbl 0940.81512
[23] Bisognano, JJ; Wichmann, EH, On the Duality Condition for Quantum Fields, J. Math. Phys., 17, 303-321, (1976)
[24] Bombelli, L.; Koul, RK; Lee, J.; Sorkin, R., Quantum Source of Entropy for Black Holes, Phys. Rev. D, 34, 373-383, (1986) · Zbl 1222.83077
[25] Bousso, R., A Covariant Entropy Conjecture, J. High Energy Phys., 07, 004, (1999) · Zbl 0951.83011
[26] Bousso, R., Holography in General Space-times, J. High Energy Phys., 06, 028, (1999) · Zbl 0951.83027
[27] Bousso, R., The Holographic Principle for General Backgrounds, Class. Quantum Grav., 17, 997-1005, (2000) · Zbl 0952.81048
[28] Brout, R.; Massar, S.; Parentani, R.; Spindel, Ph, Hawking Radiation Without Transplanckian Frequencies, Phys. Rev. D, 52, 4559-4568, (1995)
[29] Brown, JD; York, JW, Microcanonical Functional Integral for the Gravitational Field, Phys. Rev. D, 47, 1420-1431, (1993)
[30] Brown, JD; York, JW, Quasilocal Energy and Conserved Charges Derived from the Gravitational Action, Phys. Rev. D, 47, 1407-1419, (1993)
[31] Callen, C.; Wilzcek, F., On Geometric Entropy, Phys. Lett. B, 333, 55-61, (1994)
[32] Cardoso, GL; Wit, B.; Mohaupt, T., Area Law Corrections from State Counting and Supergravity, Class. Quantum Grav., 17, 1007-1015, (2000) · Zbl 0952.81025
[33] Carlip, S., Entropy from Conformal Field Theory at Killing Horizons, Class. Quantum Grav., 16, 3327-3348, (1999) · Zbl 0935.83023
[34] Carlip, S., Black Hole Entropy from Horizon Conformal Field Theory, Nucl. Phys. Proc. Suppl., 88, 10-16, (2000) · Zbl 1273.81166
[35] Carter, B.; DeWitt, C. (ed.); DeWitt, BS (ed.), Black Hole Equilibrium States, 57-214, (1973), New York
[36] Chrusciel, P.T., Delay, E., Galloway, G.J., and Howard, R., “Regularity of Horizons and The Area Theorem”, (January, 2000), [Online Los Alamos Archive Preprint]: cited on 6 April 2001, http://arxiv.org/abs/gr-qc/0001003. Final version to appear in Annales Henri Poincare. 2 · Zbl 0977.83047
[37] Chrusciel, PT; Wald, RM, Maximal Hypersurfaces in Stationary Asymptotically Flat Spacetimes, Commun. Math. Phys., 163, 561-604, (1994) · Zbl 0803.53041
[38] Corichi, A.; Nucamendi, U.; Sudarsky, D., Einstein-Yang-Mills Isolated Horizons: Phase Space, Mechanics, Hair and Conjectures, Phys. Rev. D, 62, 044046/19, (2000)
[39] Corley, S.; Jacobson, T., Hawking Spectrum and High Frequency Dispersion, Phys. Rev. D, 54, 1568-1586, (1996)
[40] Corley, S.; Jacobson, T., Lattice Black Holes, Phys. Rev. D, 57, 6269-6279, (1998)
[41] Dou, D., Causal Sets, a Possible Interpretation for the Black Hole Entropy, and Related Topics, PhD Thesis, (SISSA, Trieste, 1999). 5
[42] Ellis, J.; Hagelin, JS; Nanopoulos, DV; Srednicki, M., Search for Violations of Quantum Mechanics, Nucl. Phys. B, 241, 381-405, (1984)
[43] Flanagan, EE; Marolf, D.; Wald, RM, Proof of Classical Versions of the Bousso Entropy Bound and of the Generalized Second Law, Phys. Rev. D, 62, 084035/11, (2000)
[44] Fredenhagen, K.; Haag, R., On the Derivation of the Hawking Radiation Associated with the Formation of a Black Hole, Commun. Math. Phys., 127, 273-284, (1990) · Zbl 0692.53040
[45] Friedrich, H.; Racz, I.; Wald, RM, On the Rigidity Theorem for Spacetimes with a Stationary Event Horizon or a Compact Cauchy Horizon, Commun. Math. Phys., 204, 691-707, (1999) · Zbl 0933.83022
[46] Frolov, VP; Fursaev, DV, Mechanism of Generation of Black Hole Entropy in Sakharov’s Induced Gravity, Phys. Rev. D, 56, 2212-2225, (1997)
[47] Frolov, VP; Fursaev, DV; Zelnikov, AI, Statistical Origin of Black Hole Entropy in Induced Gravity, Nucl. Phys. B, 486, 339-352, (1997) · Zbl 0925.83049
[48] Frolov, VP; Page, DN, Proof of the Generalized Second Law for Quasistatic, Semiclassical Black Holes, Phys. Rev. Lett., 71, 3902-3905, (1993)
[49] Geroch, R., colloquium given at Princeton University, unpublished, (December, 1971). 4.1
[50] Gibbons, G.; Hawking, SW, Action Integrals and Partition Functions in Quantum Gravity, Phys. Rev. D, 15, 2752-2756, (1977)
[51] Hartle, J.; Wald, RM (ed.), Generalized Quantum Theory in Evaporating Black Hole Spacetimes, 195-219, (1998), Chicago · Zbl 0932.83028
[52] Hartle, JB; Hawking, SW, Path Integral Derivation of Black Hole Radiance, Phys. Rev. D, 13, 2188-2203, (1976)
[53] Hawking, SW, Gravitational Radiationfrom Colliding Black Holes, Phys. Rev. Lett., 26, 1344-1346, (1971)
[54] Hawking, SW, Particle Creation by Black Holes, Commun. Math. Phys., 43, 199-220, (1975) · Zbl 1378.83040
[55] Hawking, S.W., and Ellis, G.F.R., The Large Scale Structure of Spacetime, (Cambridge University Press, Cambridge, 1973). 2, 2 · Zbl 0265.53054
[56] Heusler, M., Black Hole Uniqueness Theorems, (Cambridge University Press, Cambridge, 1996). 2, 2 · Zbl 0945.83001
[57] Holzhey, C.; Larsen, F.; Wilzcek, F., Geometric and Renormalized Entropy in Conformal Field Theory, Nucl. Phys. B, 424, 443-467, (1994) · Zbl 0990.81564
[58] Horowitz, G.; Wald, RM (ed.), Quantum States of Black Holes, 241-266, (1998), Chicago · Zbl 0946.83032
[59] Israel, W., Third Law of Black-Hole Dynamics: A Formulation and Proof, Physical Review Letters, 57, 397-399, (1986)
[60] Iyer, V.; Wald, RM, Some Properties of Noether Charge and a Proposal for Dynamical Black Hole Entropy, Phys. Rev. D, 50, 846-864, (1994)
[61] Iyer, V.; Wald, RM, A Comparison of Noether Charge and Euclidean Methods for Computing the Entropy of Stationary Black Holes, Phys. Rev. D, 52, 4430-4439, (1995)
[62] Jacobson, T., On the Origin of the Outgoing Black Hole Modes, Phys. Rev. D, 53, 7082-7088, (1996)
[63] Jacobson, T.; Mattingly, D., Hawking radiation on a falling lattice, Phys. Rev. D, 61, 024017/10, (2000)
[64] Kay, BS; Wald, RM, Theorems on the Uniqueness and Thermal Properties of Stationary, Nonsingular, Quasifree States on Spacetimes with a Bifurcate Killing Horizon, Phys. Rep., 207, 49-136, (1991) · Zbl 0861.53074
[65] Lewandowski, J., Spacetimes Admitting Isolated Horizons, Class. Quantum Grav., 17, l53-l59, (2000) · Zbl 0968.83010
[66] Maldacena, JM; Strominger, A., Black Hole Greybody Factors and D-Brane Spectroscopy, Phys. Rev. D, 55, 861-870, (1997)
[67] Marolf, D., “String/M-branes for Relativists”, (August, 1999), [Online Los Alamos Archive Preprint]: cited on 6 April 2001, http://arxiv.org/abs/gr-qc/9908045. 5
[68] Misner, C.W., Thorne, K.S., and Wheeler, J.A., Gravitation, (Freeman, San Francisco, 1973). 4.2
[69] Mukohyama, S., “Aspects of black hole entropy”, (December, 1999), [Online Los Alamos Archive Preprint]: cited on 6 April 2001, http://arxiv.org/abs/gr-qc/9912103. 5
[70] Page, D.N., “Defining Entropy Bounds”, (July, 2000), [Online Los Alamos Archive Preprint]: cited on 6 April 2001, http://arxiv.org/abs/hep-th/0007238. 4.2, 4.2
[71] Page, D.N., “Huge Violations of Bekenstein’s Entropy Bound”, (May, 2000), [Online Los Alamos Archive Preprint]: cited on 6 April 2001, http://arxiv.org/abs/gr-qc/0005111. 4.2
[72] Page, D.N., “Subsystem Entropy Exceeding Bekenstein’s Bound”, (July, 2000), [Online Los Alamos Archive Preprint]: cited on 6 April 2001, http://arxiv.org/abs/hep-th/0007237. 4.2
[73] Parker, L., Quantized Fields and Particle Creation in Expanding Universes, Phys. Rev., 183, 1057-1068, (1969) · Zbl 0186.58603
[74] Peet, A., “TASI lectures on black holes in string theory”, (August, 2000), [Online Los Alamos Archive Preprint]: cited on 6 April 2001, http://arxiv.org/abs/hep-th/0008241. 5 · Zbl 1004.83002
[75] Pelath, MA; Wald, RM, Comment on Entropy Bounds and the Generalized Second Law, Phys. Rev. D, 60, 104009/4, (1999)
[76] Penrose, R.; Hawking, SW (ed.); Israel, W. (ed.), Singularities and Time-Asymmetry, 581-638, (1979), Cambridge
[77] Penrose, R., Quasi-Local Mass and Angular Momentum, Proc. R. Soc. London, A381, 53-63, (1982)
[78] Racz, I.; Wald, RM, Global Extensions of Spacetimes Describing Asymptotic Final States of Black Holes, Class. Quantum Grav., 13, 539-552, (1996) · Zbl 0866.53071
[79] Reznik, B., Trans-Planckian Tail in a Theory with a Cutoff, Phys. Rev. D, 55, 2152-2158, (1997)
[80] Sorkin, R.; Fulling, SA (ed.), Two Topics Concerning Black Holes: Extremality of the Energy, Fractality of the Horizon, 387-407, (1995), Austin · Zbl 0866.58025
[81] Sorkin, R.; Wiltshire, D. (ed.), How Wrinkled is the Surface of a Black Hole?, 163-174, (1996), Adelaide
[82] Sorkin, RD; Wald, RM (ed.), The Statistical Mechanics of Black Hole Thermodynamics, 177-194, (1998), Chicago · Zbl 0946.83034
[83] Sorkin, RD; Wald, RM; Zhang, ZJ, Entropy of Self-Gravitating Radiation, Gen. Relativ. Gravit., 13, 1127-1146, (1981)
[84] Sudarsky, D.; Wald, RM, Extrema of Mass, Stationarity and Staticity, and Solutions to the Einstein-Yang-Mills Equations, Phys. Rev. D, 46, 1453-1474, (1992)
[85] Sudarsky, D.; Wald, RM, Mass Formulas for Stationary Einstein-Yang-Mills Black Holes and a Simple Proof of Two Staticity Theorems, Phys. Rev. D, 47, r5209-r5213, (1993)
[86] Susskind, L., The World as a Hologram, J. Math. Phys., 36, 6377-6396, (1995) · Zbl 0850.00013
[87] Susskind, L.; Uglam, J., Black Hole Entropy in Canonical Quantum Gravity and Superstring Theory, Phys. Rev. D, 50, 2700-2711, (1994)
[88] ’t Hooft, G., On the Quantum Structure of a Black Hole, Nucl. Phys. B, 256, 727-745, (1985)
[89] ’t Hooft, G.; Markov, MA (ed.); Berezin, VA (ed.); Frolov, VP (ed.), On the Quantization of Space and Time, 551-567, (1988), Singapore
[90] Thorne, KS; Zurek, WH; Price, RH; Thorne, KS (ed.); Price, RH (ed.); Macdonald, DA (ed.), The Thermal Atmosphere of a Black Hole, 280-340, (1986), New Haven
[91] Unruh, WG, Notes on Black Hole Evaporation, Phys. Rev. D, 14, 870-892, (1976)
[92] Unruh, WG, Experimental Black-Hole Evaporation?, Phys. Rev. Lett., 46, 1351-1353, (1981)
[93] Unruh, WG, Dumb Holes and the Effects of High Frequencies on Black Hole Evaporation, Phys. Rev. D, 51, 2827-2838, (1995)
[94] Unruh, WG; Wald, RM, Acceleration Radiation and the Generalized Second Law of Thermodynamics, Phys. Rev. D, 25, 942-958, (1982)
[95] Unruh, WG; Wald, RM, Entropy Bounds, Acceleration Radiation and the Generalized Second Law, Phys. Rev. D, 27, 2271-2276, (1983)
[96] Unruh, WG; Wald, RM, On Evolution Laws Taking Pure States to Mixed States in Quantum Field Theory, Phys. Rev. D, 52, 2176-2182, (1995)
[97] Visser, M., “Hawking radiation without black hole entropy”, Phys. Rev. Lett., 80, 3436-3439, (1998). For a related online version see: M. Visser, “Hawking radiation without black hole entropy”, (December, 1997), [Online Los Alamos Archive Preprint]: cited on 6 April 2001, http://arxiv.org/abs/gr-qc/9712016. 1 · Zbl 0949.83034
[98] Wald, RM, On Particle Creation by Black Holes, Commun. Math. Phys., 45, 9-34, (1975)
[99] Wald, R.M., General Relativity, (University of Chicago Press, Chicago, 1984). 1, 2, 2 · Zbl 0549.53001
[100] Wald, RM, Black Hole Entropy is the Noether Charge, Phys. Rev. D, 48, r3427-r3431, (1993) · Zbl 0942.83512
[101] Wald, R.M., Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics, (University of Chicago Press, Chicago, 1994). 2, 3, 1, 4.1, 3, 6.1, 6.1 · Zbl 0842.53052
[102] Wald, RM, ‘Nernst Theorem’ and Black Hole Thermodynamics, Phys. Rev. D, 56, 6467-6474, (1997)
[103] Wald, RM; Wald, RM (ed.), Black Holes and Thermodynamics, 155-176, (1998), Chicago · Zbl 0946.83035
[104] Wald, R.M., “Gravitation, Thermodynamics, and Quantum Theory”, Class. Quantum Grav., 16, A177-A190, (1999). For a related online version see: R.M. Wald, “Gravitation, Thermodynamics, and Quantum Theory”, (January, 1999), [Online Los Alamos Archive Preprint]: cited on 6 April 2001, http://arxiv.org/abs/gr-qc/9901033. 6.2
[105] Zurek, WH; Thorne, KS, Statistical Mechanical Origin of the Entropy of a Rotating, Charged Black Hole, Phys. Rev. Lett., 54, 2171-2175, (1986)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.