×

zbMATH — the first resource for mathematics

Reproducing kernel element method. III: Generalized enrichment and applications. (English) Zbl 1060.74671
Summary: In this part of the work, a notion of generalized enrichment is proposed to construct the global partition polynomials or to enrich global partition polynomial basis with extra terms corresponding to the higher order derivatives of primary variable. This is accomplished by either multiplying enrichment functions with the original global partition polynomials, or increasing the order of global partition polynomials in the same mesh. Without refining mesh, high order consistency in interpolation hierarchy with generalized Kronecker delta property can be straightforwardly achieved in quadrilateral and triangular mesh in 2D by the proposed scheme. Comparing with the traditional finite element methods, the construction proposed here has more flexibility and only needs minimal degrees of freedom. The optimal element with high reproducing capacity and overall minimal degrees of freedom can be constructed by the generalized enrichment procedure. Two optimal elements in two dimensional space have been constructed: \(T10P3I\frac 4 3\) triangular element satisfies third order consistency condition with only 10 degrees of freedom, and \(Q15P4I\frac 4 3\) quadrilateral element satisfies fourth order consistency condition with 15 degrees of freedom. The performance of interpolation hierarchy is evaluated through solving some benchmark problems for thin (Kirchhoff) plates.

MSC:
74S30 Other numerical methods in solid mechanics (MSC2010)
74S05 Finite element methods applied to problems in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Argyris, J.H.; Fried, I.; Scharpf, D.W., The TUBA family of plate elements for the matrix displacement method, Aeronaut. royal aeronaut. soc., 72, 701-709, (1968)
[2] G.P. Bazeley, Y.K. Cheung, B.M. Irons, O.C. Zienkiewicz, Triangle elements in bending: conforming and nonconforming solutions, in: Proc. 1st Conference on Matrix Methods in Structural Mechanics, Wright-Patterson, AFB, Ohio, 1965
[3] Bell, K., A refined triangular plate bending finite element, Int. J. numer. methods engrg., 1, 101-122, (1969)
[4] Belytschko, T.; Fleming, M., Smoothing, enrichment and contact in the element-free Galerkin method, Comput. struct., 71, 173-195, (1999)
[5] Belytschko, T.; Liu, W.K.; Moran, B., Nonlinear finite elements for continua and structures, (2000), Wiley England · Zbl 0959.74001
[6] Belytschko, T.; Moes, N.; Usui, S.; Parimi, C., Arbitrary discontinuities infinite elements, Int. J. numer. methods engrg., 50, 993-1013, (2001) · Zbl 0981.74062
[7] Belytschko, T.; Lu, Y.Y.; Gu, L., Element-free Galerkin methods, Int. J. numer. methods engrg., 37, 229-256, (1994) · Zbl 0796.73077
[8] Birkhoff, G.; de Boor, C., Piecewise polynomial interpolation and approximation, () · Zbl 0136.04703
[9] Birkhoff, G.; Schultz, M.H.; Varga, R.S., Piecewise Hermite interpolation in one and two variables with applications to partial differential equations, Numer. math., 11, 232-256, (1968) · Zbl 0159.20904
[10] Brenner, S.C.; Scott, L.R., The mathematical theory of finite element methods, (1994), Springer-Verlag New York · Zbl 0804.65101
[11] Chen, J.S.; Han, W.; You, Y.; Meng, X., A reproducing kernel method with nodal interpolation property, Int. J. numer. methods engrg., 56, 935-960, (2003) · Zbl 1106.74424
[12] Chen, J.S.; Wu, C.T.; Yoon, S.; You, Y., A stabilized conforming nodal integration for Galerkin meshfree methods, Int. J. numer. methods engrg., 50, 435-466, (2001) · Zbl 1011.74081
[13] Chen, J.S.; Pan, C.; Wu, C.T.; Liu, W.K., Reproducing kernel particle methods for large deformation analysis of nonlinear structures, Comput. methods appl. mech. engrg., 139, 195-229, (1996)
[14] R.W. Clough, J. Tocher, Finite element stiffness matrices for the analysis of plate bending, in: Proc. 1st Conference on Matrix Methods in Structural Mechanics, Wright-Patterson, AFB, Ohio, 1965
[15] Donning, B.; Liu, W.K., Meshless methods for shear-deformable beams and plates, Comput. methods appl. mech. engrg., 152, 47-72, (1998) · Zbl 0959.74079
[16] Duarte, C.A.M.; Oden, J.T., A hp adaptive method using clouds, Comput. methods appl. mech. engrg., 139, 237-262, (1996) · Zbl 0918.73328
[17] Ergatoudis, I.; Irons, B.M.; Zienkiewicz, O.C., Curved, isoparametric, “quadrilateral” elements for finite element analysis, Int. J. solids struct., 4, 31-42, (1968) · Zbl 0152.42802
[18] Felippa, C.; Clough, R.W., The finite element in solid mechanics, (), 210-252
[19] de Veubeke, B. Fraeijs, Bending and stretching of plates–special models for upper and lower bounds, in: Proc. 1st Conference on Matrix Methods in Structural Mechanics, Wright-Patterson, AFB, Ohio, 1965
[20] de Veubeke; Fraeijs, B., A conforming finite element for plate bending, Int. J. solids struct., 4, 95-108, (1968) · Zbl 0168.22602
[21] Hall, C.A., Bicubic interpolation over triangles, J. math. mech., 19, 1-11, (1969) · Zbl 0194.47102
[22] S. Hao, W.K. Liu, Revisit of moving particle finite element method, in: Fifth World Congress on Computational Mechanics, Vienna, Austria, 7-12 July 2002
[23] H. Hencky, Der Spannungszustand in rechtechigen platten, Ph.D. thesis, Darmstadt, Published by R. Oldenbourg, Munich and Berlin, Germany, 1913 · JFM 44.0944.03
[24] Hughes, T.J.R., The finite element method, (1987), Prentice Hall Inc Englewood Cliffs, NJ
[25] Irons, B.M., A conforming quartic triangular element for plate bending, Int. J. numer. methods engrg., 1, 29-45, (1969) · Zbl 0247.73071
[26] Li, S.; Liu, W.K., Meshfree and particle methods and their applications, Appl. mech. rev., 55, 1-34, (2002)
[27] S. Li, H. Lu, W. Han, W.K. Liu, D.C. Simkins, Reproducing kernel element, Part II. Global conforming \(I\^{}\{m\}/C\^{}\{n\}\) hierarchy, Comput. Meth. Appl. Mech. Engrg., in press · Zbl 1093.74062
[28] S. Li, D.C. Simkins Jr., H. Lu, Compatible reproducing kernel quadrilateral elements and applications, in press
[29] Liu, W.K.; Chen, Y.; Uras, R.A.; Chang, T.C., Generalized multiple scale reproducing kernel particle methods, Comput. methods appl. mech. engrg., 139, 91-157, (1996) · Zbl 0896.76069
[30] Liu, W.K.; Jun, S.; Zhang, Y.F., Reproducing kernel particle methods, Int. J. numer. methods fluids, 20, 1081-1106, (1995) · Zbl 0881.76072
[31] Liu, W.K.; Uras, R.A.; Chen, Y., Enrichment of the finite element method with the reproducing kernel particle method, J. appl. mech., ASME, 64, 861-870, (1997) · Zbl 0920.73366
[32] Liu, W.K.; Guo, Y.; Tang, S.; Belytschko, T., A multiple-quadrature eight-node hexahedral finite element for large deformation elastoplastic analysis, Comput. methods appl. mech. engrg., 154, 69-132, (1998) · Zbl 0935.74068
[33] Liu, W.K.; Zhang, Y.; Ramirez, M.R., Multiple scale finite element methods, Int. J. numer. methods engrg., 32, 969-990, (1991) · Zbl 0758.73049
[34] W.K. Liu, W. Han, H. Lu, S. Li, J. Cao, Reproducing kernel element, Part I. Theoretical formulation, Comput. Methods Appl. Mech. Engrg., in press · Zbl 1060.74670
[35] H. Lu, W.K. Liu, J.S. Chen, J. Cao, Consistent reproducing kernel element smoothing in progressive adaptive finite element method, Int. J. Numer. Methods Engrg., in press
[36] H. Lu, H.S. Cheng, J. Cao, W.K. Liu, Adaptive enrichment meshfree simulation and experiment on buckling and post-buckling analysis in sheet metal forming, Comput. Methods Appl. Mech. Engrg., in press · Zbl 1082.74017
[37] D.C. Simkins Jr., S. Li, H. Lu, W.K. Liu, Reproducing kernel element method, Part IV. Globally conforming \(C\^{}\{n\}\)\((n⩾1)\) triangular hierarchy, Comput. Methods Appl. Mech. Engrg., in press
[38] Szilard, R., Theory and analysis of plates, (1974), Prentice-Hall Englewood Cliffs, NJ
[39] R.L. Taylor, S. Govinfjee, Solution of clamped rectangular plate problems, Technical Report, UCB/SEMM-2002/09, University of California, Berkeley
[40] Timoshenko, S.P.; Woinowsky-Krieger, S., Theory of plates and shells, (1959), McGraw-Hill New York · Zbl 0114.40801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.