×

zbMATH — the first resource for mathematics

Positivity conditions in meshless collocation methods. (English) Zbl 1060.74667
Summary: Collocation meshless methods are conceptually simple, easy-to-implement and fast numerical methods. The robustness of collocation methods has, however, been an issue especially for scattered set of points. In this paper we show that the robustness of collocation meshless methods can be improved by ensuring that certain conditions, defined as the positivity conditions, are satisfied when constructing approximation functions and their derivatives. The significance of positivity conditions is pointed out by an error analysis of the finite cloud method, which is a collocation based meshless method. We propose techniques, based on modification of weighting functions, to ensure satisfaction of positivity conditions on the approximation function and its derivatives when using a scattered set of points. Several types of weighting functions are tested for 1D and 2D problems on scattered points. Numerical results demonstrate the effectiveness of collocation methods when positivity conditions are satisfied.

MSC:
74S30 Other numerical methods in solid mechanics (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Belytschko, T.; Krongauz, Y.; Organ, D.; Fleming, M.; Krysl, P., Meshless methods: an overview and recent developments, Comput. methods appl. mech. engrg., 139, 3-47, (1996) · Zbl 0891.73075
[2] Jin, X.; Li, G.; Aluru, N.R., On the equivalence between least-squares and kernel approximation in meshless methods, CMES: comput. model. engrg. sci., 2, 4, 447-462, (2001) · Zbl 0996.65118
[3] Belytschko, T.; Lu, Y.Y.; Gu, L., Element free Galerkin methods, Int. J. numer. methods engrg., 37, 229-256, (1994) · Zbl 0796.73077
[4] Liu, W.K.; Jun, S.; Li, S.; Adee, J.; Belytschko, T., Reproducing kernel particle methods for structural dynamics, Int. J. numer. methods engrg., 38, 1655-1679, (1995) · Zbl 0840.73078
[5] Chen, J.-S.; Pan, C.; Wu, C.; Liu, W.K., Reproducing kernel particle methods for large deformation analysis of non-linear structures, Comput. methods appl. mech. engrg., 139, 195-227, (1996) · Zbl 0918.73330
[6] Atluri, S.N.; Zhu, T., A new meshless local petrov – galerkin (MLPG) approach in computational mechanics, Comput. mech., 22, 117-127, (1998) · Zbl 0932.76067
[7] Oñate, E.; Idelsohn, S.; Zienkiewicz, O.C.; Taylor, R.L., A finite point method in computational mechanics. applications to convective transport and fluid flow, Int. J. numer. methods engrg., 39, 3839-3866, (1996) · Zbl 0884.76068
[8] Oñate, E.; Idelsohn, S.; Zienkiewicz, O.C.; Taylor, R.L.; Sacco, C., A stabilized finite point method for analysis of fluid mechanics problems, Comput. methods appl. mech. engrg., 139, 315-346, (1996) · Zbl 0894.76065
[9] Liszka, T.J.; Duarte, C.A.; Tworzydlo, W.W., Hp-meshless cloud method, Comput. methods appl. mech. engrg., 139, 263-288, (1996) · Zbl 0893.73077
[10] Aluru, N.R., A point collocation method based on reproducing kernel approximations, Int. J. numer. methods engrg., 47, 1083-1121, (2000) · Zbl 0960.74078
[11] Aluru, N.R.; Li, G., Finite cloud method: a true meshless technique based on a fixed reproducing kernel approximation, Int. J. numer. methods engrg., 50, 10, 2373-2410, (2001) · Zbl 0977.74078
[12] Benito, J.J.; Urena, F.; Gavete, L., Influence of several factors in the generalized finite difference method, Appl. math. model., 25, 1039-1053, (2001) · Zbl 0994.65111
[13] Motzkin, T.S.; Wasow, W., On the approximation of linear elliptic differential equations by difference equations with positive coefficients, J. math. phys., 31, 253-259, (1953) · Zbl 0050.12501
[14] Patankar, S.V., Numerical heat transfer and fluid flow, (1980), Hemisphere · Zbl 0595.76001
[15] Demkowicz, L.; Karafiat, A.; Liszka, T., On some convergence results for FDM with irregular mesh, Comput. methods appl. mech. engrg., 42, 343-355, (1984) · Zbl 0518.65070
[16] Bronshtein, I.N.; Semendyayev, K.A., Handbook of mathematics, (1998), Springer-Verlag Berlin, Heidelberg · Zbl 0873.00005
[17] Han, W.; Meng, X., Error analysis of the reproducing kernel particle method, Comput. methods appl. mech. engrg., 190, 6157-6181, (2001) · Zbl 0992.65119
[18] Krysl, P.; Belytschko, T., Element-free Galerkin method: convergence of the continuous and discontinuous shape functions, Comput. methods appl. mech. engrg., 148, 257-277, (1997) · Zbl 0918.73125
[19] Liu, W.K.; Li, S.; Belytschko, T., Moving least-square reproducing kernel methods (I) methodology and convergence, Comput. methods appl. mech. engrg., 143, 113-154, (1997) · Zbl 0883.65088
[20] Brenner, S.C.; Scott, L.R., The mathematical theory of finite element methods, (1994), Springer New York · Zbl 0804.65101
[21] Babuska, I.; Melenk, J.M., The partition of unity method, Int. J. numer. methods engrg., 40, 727-758, (1997) · Zbl 0949.65117
[22] Golub, G.H.; Van Loan, C.F., Matrix computations, (1989), Johns Hopkins University Press · Zbl 0733.65016
[23] Krongauz, Y.; Belytschko, T., Enforcement of essential boundary conditions in meshless approximations using finite elements, Comput. methods appl. mech. engrg., 131, 133-145, (1996) · Zbl 0881.65098
[24] Huerta, A.; Fernandez-Mendez, S., Enrichment and coupling of the finite element and meshless methods, Int. J. numer. methods engrg., 48, 1615-1636, (2000) · Zbl 0976.74067
[25] Wagner, G.J.; Liu, W.K., Hierarchical enrichment for bridging scales and meshfree boundary conditions, Int. J. numer. methods engrg., 50, 507-524, (2001) · Zbl 1006.76073
[26] Chen, J.S.; Han, W.; You, Y.; Meng, X., A reproducing kernel method with nodal interpolation property, Int. J. numer. methods engrg., 56, 935-960, (2003) · Zbl 1106.74424
[27] Timoshenko, S.P.; Goodier, J.N., Theory of elasticity, (1982), McGraw-Hill · Zbl 0266.73008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.