zbMATH — the first resource for mathematics

Integration constraint in diffuse element method. (English) Zbl 1060.74661
Summary: The ”patch test” verifies whether a linear solution is reproduced exactly in an elasticity problem. This approach to test the numerical formulation and the code itself is standard in the finite element method. The MLS shape functions do not have a polynomial form. Therefore, the integration is not well performed by the classical Gauss-Legendre scheme and the patch test is only satisfied asymptotically at convergence. In this paper, we propose a custom quadrature scheme for MLS shape functions in order to ensure the properties needed for an exact verification of the patch test.

74S30 Other numerical methods in solid mechanics (MSC2010)
74S05 Finite element methods applied to problems in solid mechanics
Full Text: DOI
[1] Belytschko, T.; Lu, Y.Y.; Gu, L., Element-free Galerkin methods, Int. J. numer. methods engrg., 37, 229-256, (1994) · Zbl 0796.73077
[2] Bonet, J.; Lok, T.-S.L., Variational and momentum preservation aspects of smooth particle hydrodynamics formulation, Comput. methods appl. mech. engrg., 180, 97-115, (1999) · Zbl 0962.76075
[3] Breitkopf, P.; Rassineux, A.; Touzot, G.; Villon, P., Explicit form and efficient computation of MLS shape functions and their derivatives, Int. J. numer. methods engrg., 48, 451-466, (2000) · Zbl 0965.65015
[4] Beissel, S.; Belytschko, T., Nodal integration of the element-free Galerkin method, Comput. methods appl. mech. engrg., 139, 49-74, (1996) · Zbl 0918.73329
[5] Chen, J.-S.; Wu, C.-T.; Yoon, S.; You, Y., A stabilized conforming nodal integration for Galerkin mesh-free methods, Int. J. numer. methods engrg., 50, 2, 435-466, (2001) · Zbl 1011.74081
[6] Chen, J.S.; Wu, C.T.; Yoon, S., Nonlinear version of stabilized conforming nodal integration for Galerkin meshfree methods, Int. J. numer. methods engrg., 53, 2587-2615, (2002) · Zbl 1098.74732
[7] De, S.; Bathe, K.J., The method of finite spheres, Computat. mech., 25, 329-345, (2000) · Zbl 0952.65091
[8] Dolbow, J.; Belytschko, T., Numerical integration of the Galerkin weak form in meshfree methods, Computat. mech., 23, 3, 219-230, (1999) · Zbl 0963.74076
[9] Lancaster, P.; Salkauskas, K., Curve and surface Fitting: an introduction, (1986), Academic Press London, Orlando · Zbl 0649.65012
[10] Lin, H.; Atluri, S.N., Meshless local petrov – galerkin (MLPG) method for convection – diffusion problems, Comput. model. engrg. sci., 1, 2, 45-60, (2000)
[11] Liszka, T.; Orkisz, J., The finite difference method at arbitrary irregular grids and its application in applied mechanics, Comput. struct., 11, 83-95, (1980) · Zbl 0427.73077
[12] Liu, W.K.; Chen, Y.; Jun, S.; Chen, J.S.; Belytschko, T.; Pan, C., Overview and applications of the reproducing kernel particle methods, Arc. computat. methods engrg.: state art rev., 3, 3-80, (1996)
[13] Lu, Y.Y.; Belytschko, T.; Gu, L., A new implementation of the element free Galerkin method, Comput. methods appl. mech. engrg., 113, 397-414, (1994) · Zbl 0847.73064
[14] Z. Maouche, Contribution a l’amelioration de la prediction des systemes de forage rotary. Couplage garniture-outil de forage, Phd Thesis, Ecole des Mines de Paris, 1999
[15] Mukherjee, Y.X.; Mukherjee, S., On boundary conditions in element-free Galerkin method, Computat. mech., 11, 264-270, (1997) · Zbl 0884.65105
[16] Nayroles, B.; Touzot, G.; Villon, P., Generalizing the finite element method: diffuse approximation and diffuse elements, Computat. mech., 10, 307-318, (1992) · Zbl 0764.65068
[17] Oñate, E.; Idelsohn, S.R., A mesh-free finite point method for advective-diffusive transport and fluid flow problems, Computat. mech., 21, 283-292, (1998) · Zbl 0919.76072
[18] Oñate, E.; Idelsohn, S.; Zienkiewicz, O.C.; Taylor, R.L., A finite point method in computational mechanics. applications to convective transport and fluid flow, Int. J. numer. methods engrg., 39, 3839-3886, (1996) · Zbl 0884.76068
[19] J.-M. Savignat, Approximation diffuse hermite et ses applications, PhD Thesis, Ecole des Mines de Paris, 2000
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.